
XQuery!: An XML query language with side effects

Giorgio Ghelli1, Christopher Ŕe2, and J́erôme Siḿeon3

1 Universit̀a di Pisa
2 University of Washington

3 IBM T.J. Watson Research Center

Abstract. As XML applications become more complex, there is a growing interest
in extending XQuery with side-effect operations, notably XML updates. However, the
presence of side-effects is at odds with XQuery’s declarative semantics which leaves
evaluation order unspecified. In this paper, we define “XQuery!”, an extension of XQuery
1.0 that supports first-class XML updates and user-level control over update application,
preserving the benefits of XQuery’s declarative semantics when possible. Our exten-
sions can be easily implemented within an existing XQuery processor and we show
how to recover basic database optimizations for such a language.

1 Introduction

As XML applications grow in complexity, developers are calling for advanced features in
XML query languages. Many of the most requested extensions, such as XML updates, sup-
port for references, and variable assignment, involve side-effects. So far, proposed update ex-
tensions for XQuery [16, 22, 24, 1] have been based on restricted composability and a “snap-
shot semantics”, where updates are only applied at the end of query execution. This approach
preserves as much of XQuery’s declarative semantics as possible, but the query cannot use
the result of an update for further processing, limiting expressiveness in a way which is not
always acceptable for applications.

In this paper, we develop the semantic foundations for extending XQuery 1.0 with side-
effect operations in a fully compositional way. We use that framework to define XQuery!
(read: “XQuery Bang”), an extension of XQuery 1.0 [3] that supports compositional XML
updates and user-level control over update application. We show such a language can be
obtained with limited impact on XQuery’s declarative semantics and classical optimization
techniques. To the best of our knowledge, this is the first complete treatment and imple-
mentation of a compositional side-effect extension of XQuery. The semantic framework is
characterized by the presence of an operator (snap) that allows users to identify declarative
fragments within their side-effecting programs, and which enables the recovery of traditional
database optimizations.

XQuery! supports the same basic update operations as previous proposals [16, 8, 7]. How-
ever, the ability to use updates in any context (e.g., in function calls) and to control update
application make it particularly expressive. Compositionality is one of the main design prin-
ciples in XQuery 1.0, resulting in a language simpler to explain to users and specify. Our ex-
perience with a more restricted update language [24] shows that applications often require the
additional expressiveness. We illustrate how compositionality between queries and updates in
XQuery! can be used to develop a simple Web service that includes logging of service calls.

The contributions of the paper are:

– We provide a formal description of a semantic framework for extending XML query
languages with side-effect operations which can appear anywhere in the query.

2

– We describe a new construct (snap) that can be used to control update application.
The semantics of that operator enables unlimited nesting. We show how this semantics
enables the recovery of standard database optimizations in the presence of side-effects.

– We define XQuery!, an extension to XQuery 1.0 with first-class updates, and illustrate its
use on a concrete Web service usecase.

– We describe a simple implementation of XQuery!. We show that such an implementation
can easily be obtained from an existing XQuery engine.

The main novelty in our framework lies in the ability to control update application through
thesnap construct. The notion of delaying update application to the end of query evaluation
(so calledsnapshotsemantics) was first proposed in [22, 16], and has been studied further
in [8, 7, 1]. Previous proposals apply that approach to the whole query, while XQuery! pro-
vides programmer control of the snapshot scope through thesnap operator. Languages with
explicit control of the snapshot semantics are mentioned explicitly in the XQuery update re-
quirements document [5], and have been explored by the W3C XML update task force [10,
4]. Work on the XL programming language [11] indicates support for fully compositional
updates, but not for control of update application. To the best of our knowledge, our work is
the first to propose a complete treatment of such an operator, and to explicit its relationship
with optimization properties of the language.

Due to space limitations, we restrict the presentation to the main aspects of the language
and its semantics. We first introduce XQuery! through a Web service usecase, before giving a
formal definition of the language semantics. We then give an overview of our implementation,
and discuss optimization issues. More details of the language, its complete formal semantics
and more details about the implementation can be found in the complete paper [12].

2 XQuery! Use Case: Adding Logging to an XQuery Web Service

2.1 Snapshot semantics

Before we illustrate the use of XQuery!, we introduce the notion of snapshot semantics. All
the update extensions to XQuery we are aware of [22, 16, 8, 7, 1] delay update applications
up to the end of query execution, in order to retain the declarative semantics of XQuery.
For instance, consider the following query which inserts a newbuyer element into a list of
purchasers for every person selling an item.

for $p in $auction//person
for $t in $auction//closed_auction
where $t/buyer/@person = $p/@id
return insert { <buyer person="{$t/buyer/@person}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }

This is a typical join query, and the snapshot semantics ensures that traditional optimiza-
tion techniques, such as algebraic rewritings and lazy evaluation, can be applied. In XQuery!,
where the snapshot semantics if controlled explicitely, the absence of any internalsnap al-
lows similar optimizations. We come back to this point in more details in Section 4.

In addition, in order to facilitate rewritings, previous proposals limit the use of updates
to specific sub-expressions, typically in the return clause of a FLWOR, as in our example. In
the rest of the section, we show how a fairly simple Web service application already requires
expressiveness that goes beyond that provided by restricted languages.

3

2.2 The Web Service scenario: updates inside functions

We assume a simple Web service application in which service calls are implemented as
XQuery functions organized in a module. Because of space limitations, we focus on the
single functionget item , which, given an itemid and the userid of the requester, returns
the item with the given itemid; the userid is ignored. The server stores the auction document
from XMark [23] in a variable$auction . The following is a possible implementation for
that function using standard XQuery.

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return $item

};

Now, let’s assume that the Web service wants to log each item access. This can be easily
done in XQuery! by adding an insert operation in the body of the function.

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return (

(::: Logging code :::)
let $name := $auction//person[@id = $userid]/name return
insert { <logentry user="{$name}" itemid="{$itemid}"/> }
into { $log },
(::: End logging code :::)
$item

)
};

This simple example illustrates the need for expressions that have a side-effect (the log
entry insertion) and also return a value (the item itself). This is a central feature of our ap-
proach, which sets it apart from all the previously proposed XML update languages we are
aware of [8, 7, 22, 16, 25, 24, 15].

Note that in the above example we use XQuery’s sequence construction (,) to compose
the conditional insert operation with the result$item . This is a convenience made possible
by the fact that atomic update operations always return the empty sequence.

2.3 Controlling update application

The other central feature of our approach is the ability to control the “snapshot scope”. A
single global scope is often too restrictive, since many applications, at some stage of their
computation, need to analyse their own previous effects. For this reason, XQuery! supports
a snap { Expr } operator which evaluatesExpr, collects its update requests, and applies
them at the end of its scope. Asnap is always implictly present around the top-level query
in the main XQuery! module, so that the usual “delay everything” semantics is obtained
by default. However, when needed, the code can decide to see its own effects. For exam-
ple, consider the following simple variant for the logging code, where the log is summa-
rized into an archive once every$maxloginsertions. (snap insert {} into {} abbreviates
snap {insert {} into {}}, and similarly for the other update primitives).

(::: Logging code :::)
let $name := $auction//person[@id = $userid]/name

4

return
(snap insert { <logentry user="{$name}"

itemid="{$item/@id}"/> }
into { $log },

if (count($log/logentry) >= $maxlog)
then (archivelog($log,$archive),

snap delete $log/logentry)
else ()

(::: End logging code :::)

Here, thesnap aroundinsert makes the insertion happen. The insertion is then visi-
ble to the code inside the if-then-else, as required, because XQuery! semantics specifies that
the sequence constructore1,e2 causese1 to be fully evaluated beforee2 . Hence, XQuery!
expressive power relies on the combination of thesnap operator and explicitly defined eval-
uation order. This is an important departure from XQuery 1.0 semantics, and requires some
further discussion.

2.4 Sequence order, evaluation order, and update order

In XQuery 1.0, queries return sequences of items. Although sequences of items are ordered,
the evaluation order for most operators is left to the implementation. For instance, in the
expression(e1, e2), if e1 ande2 evaluate respectively tov1 andv2, then the value ofe1, e2

must bev1, v2, in this order. However, the engine can evaluatee2 beforee1, provided the
result is presented in the correct sequence order. The only visible effect of this freedom is
the fact that, if both expressionse1 ande2 were to raise an error, which error is reported may
vary from implementation to implementation.

Although that approach is reasonable in an almost-purely functional language as XQuery
1.0, it is widely believed that programs with side-effects are impossible to reason about un-
less the evaluation order is easy to grasp.4 For this reason, in XQuery! we adopt the standard
semantics used in popular functional languages with side-effects [18, 17], based on the def-
inition of a precise evaluation order. This semantics is easy to understand for a programmer
and easy to formalize using the XQuery 1.0 formal semantic style, but is quite constraining
for the compiler.5 However, as we discuss in Section 3, inside an innermostsnap no side-
effect takes place, hence we there recover XQuery 1.0 freedom of evaluation order. XQuery
1.0 allows the processor to evaluate subexpressions in any order, provided that the item se-
quence is presented in the order which is specified by the formal semantics. Similarly, inside
an innermostsnap , both the pure subexpressions and the update operations can be evaluated
in any order, provided that, at the end of thesnap scope, both the item sequence and the list
of update requests are presented in the correct order.

The order of update requests is a bit harder to maintain than sequence order, since a
FLWOR expression may generate updates in thefor, where, andreturn clause, while result
items are only generated in thereturn clause. For this reason, XQuery! supports alternative
semantics for update application, discussed in Section 3.2, which do not depend on order.

In many situations, different scopes for thesnap would lead to the same result. In such
cases, the programmer can adopt a simple criterion: makesnap scope as broad as possible,

4 Simon Peyton-Jones: “lazy evaluation and side effects are, from a practical point of view, incompat-
ible” [14].

5 An interesting alternative is to add a sequencing operator (e.g.,e1;e2) that forcese1 to be evaluated
beforee2 , while retaining the XQuery 1.0 freedom of evaluation order for the other expressions. This
alternative requires a more complex formalization style, and is explored in the full paper [12].

5

since a broadersnap favors optimization. Asnap should only be closed when the rest of
the program relies on the effect of the updates.

2.5 Nested snap

Support for nested snap is central to our proposal, and is essential for compositionality. As-
sume, for example, that a counter is implemented using the following function.

declare variable $d := element counter { 0 };

declare function nextid() as xs:integer {
snap { replace { $d/text() } with { $d + 1 },

$d }
};

The snap around the function body is meant to ensure that any next call effectively returns
the next value for the counter. Obviously, thenextid() function may be used in the scope
of another snap. For instance, the following variant of the logging code computes a new id
for every log entry.

(::: Logging code :::)
let $name := $auction//person[@id = $userid]/name
return

(snap insert { <logentry id="{nextid()}"
user="{$name}"
itemid="{$item/@id}"/> }

into { $log },
if (count($log/logentry) >= $maxlog) ...

(::: End logging code :::)

The example shows that thesnap operator must not freeze the state when its scope is
opened, but just delay the updates that are in its immediate scope until the scope closes. Any
nested snap opens a nested scope, and makes its updates visible as soon as it is closed. The
details of this semantics are explained in Section 3.

3 XQuery! Semantics

The original semantics of XQuery is defined in [6] as follows. First, each expression is nor-
malized to acoreexpression. Then, the meaning of core expressions is defined by a seman-
tic judgementdynEnv` Expr ⇒ value. This judgment states that, in the dynamic context
dynEnv, the expressionExpryields the valuevalue, wherevalueis an instance of the XQuery
data model (XDM).

To support side-effect operations, we extend the data model with a notion of store that
maintains the state of the data model being processed. We then extend the semantic judgement
so that expressions may change the store, and produce both a value and a list of pending up-
date. In the rest of this section, we introduce the update primitives supported by the XQuery!
language, followed by the data model extensions. We then shortly describe normalization,
and finally define the new semantic judgment.

6

3.1 Update primitives

At the language level, XQuery! supports a set of updates primitives, insertion, deletion, re-
placement, and renaming of XML nodes, which are standard [16, 22, 24, 1, 8, 7]. The lan-
guage also includes an explicit deep-copy operator, writtencopy { ... } . The full gram-
mar for the XQuery! extension to XQuery 1.0 is given in Appendix A.

The detailed semantics of these primitives is also standard: insertion allows a sequence
of nodes to be inserted below a parent in a specified position. Replacement allows a node
to be replaced by another, and renaming allows the node name to be updated. Finally, to
better deal with aliasing issues in the context of a compositional language, the semantics of
the delete operation does not actually delete nodes, but merelydetachesnodes from their
parents. Similarly to what happens with object-oriented languages, if the “deleted” (actually,
detached) node is still accessible from a variable, then it can still be queried, or inserted
somewhere. The alternative “erase” semantics could be supported as well, but we believe itGG: This sentence may

go is slightly more complex to specify, implement, and program with.

3.2 XDM stores and update requests

Store. To represent the state of XQuery! computation, we need a notion ofstore, which
specifies, for each node id, its kind (element, attribute, text...), parent, name, and content. A
formal definition can be found in [12, 13, 9]. On this store, we define accessors and construc-
tors corresponding to those of the XDM. Note that this presentation focuses on well-formed
documents, and does not consider the impact of types on the data model representation and
language semantics.
Update requests.We then define, for each XQuery! update primitive, the correspondingup-
date request, which is a tuple that contains the operation name and its parameters, written as
“opname(par1,...,parn)”. For each update request, we define itsapplicationas a partial func-
tion from stores to stores. For example, the application of “insert (nodeseq,nodepar,nodepos)”
inserts all nodes ofnodeseqas children ofnodepar, afternodepos. For each update request
we also define some preconditions for its parameters. In the insert case, they include that fact
that nodes innodeseqmust have no parent, and thatnodeposmust be a child ofnodepar.
When the preconditions are not met, the update application is undefined.
Update lists.An update list, noted as∆, is a list of update requests. Update lists are collected
during the execution of the code inside a givensnap , and are applied hen thesnap scope
is closed. An update list is anordered list, whose order is fully specified by the language
semantics.
Applying an update list to the store. For optimization reasons, XQuery! supports three dis-
tinct semantics for update list application:ordered, non-deterministic, or conflict-detection.
The programmer chooses the semantics through an optional keyword after eachsnap .

In theorderedsemantics, the update requests are applied in the order specified by∆. In
thenon-deterministicapproach, the update requests are applied in an arbitrary order. In the
conflict-detectionapproach, update application is divided into conflict verification followed
by store modification. The first phase tries to prove, by some simple rules, that the update se-
quence is actually conflict-free, meaning that the ordered application of every permutation of
∆ would produce the same result. If verification fails, update application fails. If verification
succeeds, the store is modified, and the order of application is immaterial. Hence we get the
benefit of determinism with no dependency on the order of updates inside∆.

Theorderedapproach is simple and deterministic, but imposes more restrictions on the
optimizer. Thenon-deterministicapproach gives the optimizer more leverage, but non-determinism

7

makes code development harder, especially in the testing phase. Finally, theconflict-detection
approach gives the optimizer the same re-ordering freedom as the non-deterministic approach
and avoids non-determinism. However, it rules out many reasonable pieces of code, as exem-
plified in the full paper. Moreover, it can raise run-time failure which may be difficult to
understand and to prevent.

Our implementation currently supports all the three semantics. We believe more experi-
ence with concrete applications is needed in order to assess the best choice.

3.3 Normalization

Normalization simplifies the semantics specification by first transforming each XQuery! ex-
pression into acoreexpression. As a result, the semantics only needs to be defined on the core
language. The syntax of XQuery! core for update operations is almost identical to that of the
surface language. The only non-trivial normalization effect is the insertion of a deep copy
operator around the first argument ofinsert , as specified by the following normalization
rule; the same happens to the second argument ofreplace . As with element construction
in XQuery 1.0, this copy prevents the inserted tree from having two parents.

[insert { Expr1} into { Expr2}]
insert {copy { [Expr1] }} as last into { [Expr2] }

3.4 Formal semantics

Dynamic evaluation judgment.We extend the XQuery 1.0 semantic judgement “dynEnv`
Expr⇒ value”, in order to deal with delayed updates and side-effects, as follows:

store0; dynEnv` Expr ⇒ value; ∆; store1

Here,store0 is the initial store,dynEnvis the dynamic context,Expr is the expression being
evaluated,valueand∆ are the value and the list of update requests returned by the expression,
andstore1 is the new store after the expression has been evaluated. The updates in∆ have
not been applied tostore1 yet, butExpr may have modifiedstore1 thanks to a nestedsnap ,
or by allocating new elements.

Observe that, while the store is modified, the update list∆ is just returned by the ex-
pression, exactly as thevalue. This property hints at the fact that an expression which just
produces update requests, without applying them, is actually side-effects free, hence can be
evaluated with the same approaches used to evaluate pure functional expressions. This is
the main reason to use a snapshot semantics: inside the innermostsnap , where updates are
collected but not applied, lazy evaluation techniques can be applied.
Dynamic semantics of XQuery expressions.The presence of stores and∆ means that every
judgment in XQuery 1.0 must be extended in order to properly deal with them. Specifically,
every semantic judgment which contains at least two subexpressions has to be extended in
order to specify which subexpression has to be evaluated first. Consider for example the rule
for the sequence constructor.

store0; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

store0; dynEnv` Expr1, Expr2 ⇒ value1, value2; (∆1,∆2); store2

8

As written,Expr1 must be evaluated first in order forstore1 to be computed and passed
for the evaluation ofExpr2.

In the case the sub-expressions do not contain any snap, the store remains the same, and
evaluation order becomes irrelevant again, bringing back the expected declarative semantics.
Of course,∆1 must precede∆2 in the result, when theorderedapproach is followed, but this
is not harder than preserving the order of (value1, value2); preserving update order is more
complex in the case of FLWOR expressions and function calls (see [12]).
Dynamic semantics of XQuery! operations.We have to define the semantics ofcopy , of
the update operators, and ofsnap . copy just invokes the corresponding operation at the
data model level, adding the corresponding nodes to the store. The evaluation of an update
operation produces an update request, which is added to the list of the pending update requests
produced by the subexpressions, whilereplace producestwoupdate requests, insertion and
deletion. Here is the semantics ofreplace .

store0; dynEnv` Expr1 ⇒ node; ∆1; store1
store1; dynEnv` Expr2 ⇒ nodeseq; ∆2; store2

store2; dynEnv` parent(node) ⇒ nodepar; (); store2
∆3 = (∆1,∆2, insert(nodeseq, nodepar, node), delete(node))

store0; dynEnv` replace { Expr1} with { Expr2} ⇒ (); ∆3; store2

The evaluation produces an empty sequence and an update list. It may also modify the
store, but only if eitherExpr1 or Expr2 modify it. If they only perform allocations or copies,
their evaluation can still be commuted or interleaved. If either executes asnap , the processor
must follow the order specified by the rule, since, for example,Expr2 may depend on the part
of the store which has been modified by asnap in Expr1. The two update requests produced
by the operation are just inserted into the pending update list∆3 after every update requested
by the two subexpressions. The actual order is only relevant if theorderedsemantics has been
requested for the smallest enclosingsnap .

The rule forsnap looks very simple: thesnap argument is evaluated, it produces its
own update list∆, and∆ is applied to the store.

store0; dynEnv` Expr ⇒ value; ∆; store1
store2 = apply∆ to store1

store0; dynEnv` snap { Expr} ⇒ value; (); store2

The evaluation ofExpr may itself modify the store, and this modified store is updated by
thesnap . For example, the following piece of code inserts<a/><c/> into $x , in this
order, since the internalsnap is closed first, and it only applies the updates in its own scope.

snap ordered { insert {<a/>} into $x,
snap { insert {} into $x },
insert {<c/>} into $x }

Hence, the formal semantics implicitly specifies a stack-like behavior, reflected by the
actual stack-based implementation that we adopted (see [12]). However, the stack needs not
be explicitly represented in the formal semantics; it is built into the recursive machinery of
the deduction process exploited in the formal semantic definition.

In the appendix we list the semantic rules for the other update operations, and for the most
important core XQuery 1.0 expressions.

9

4 Implementation and Optimization

XQuery! has been fully implemented as an extension to the Galax XQuery engine [21, 20],
which includes an optimizer based on a variant of a standard nested-relational algebra. It is
not yet fully tested, but has been tried on significantly complex update programs and a version
of the compiler is available for download6. In this section, we review the modifications that
were required to the original Galax compiler to support side-effects, notably changes to the
optimizer.

4.1 Data model and run-time

Changes to the data model implementation to support atomic updates were not terribly inva-
sive. The only two significant challenges relate to dealing with document order maintenance,
and garbage collection of persistent but unreachable nodes, resulting from the detach seman-
tics. Both of these aspects are beyond the scope of this paper.

The run-time must be modified to support update lists, which are computed in addition to
the value for each expression. The way the update lists are represented internally depends on
whether thesnap operator uses the ordered semantics or not (See Section 3.2). Because the
nondeterministic and conflict-detection semantics are both independent of the actual order of
the atomic updates collected in asnap scope, they can be easily implemented using a stack
of update lists, where each update list on the stack correspond to a givensnap scope. The
invocation of an update operation adds an update in the update list on the top of the stack.
When exiting asnap , the top-most delta bag is popped from the stack and applied. In the
case of conflict-detection semantics, it is also checked for conflicts, in linear time, using a
pair of hash-tables over node ids.

This implementation strategy has the virtue that it does not require substantial modifica-
tions to the existing XQuery infrastructure. The implementation of the ordered semantics is
more involved, as we need to rely on a specialized tree structure to represent the update list
in a way which allows the compiler to retain the order in which each update must be applied.
We refer to the full paper [12] for more details.

4.2 Compilation architecture

The implementation of XQuery! did not require any major changes to the XQuery processing
model or compilation architecture. As for XQuery 1.0, the compilation proceeds by first
parsing the query into an AST, followed bynormalization, a phase of syntacticrewriting,
compilationinto the XML algebra [21],optimizationandevaluation.

Changes to the parser and normalization are trivial (See Section 3). A number of the
syntactic rewritings must be guarded by a judgment which detects whether side effects occur
in a given subexpression to avoid changing the semantics for the query. Of course, this is
not necessary when the query is guarded by an innermostsnap , which is asnap whose
scope contains no othersnap , nor any call to any function which may cause asnap to be
evaluated. In this case, all the rewritings immediately apply.

4.3 Changes to the optimizer

Galax uses a rule-based approach in several phases of the logical optimization. Most rewrite
rules require some modifications. To illustrate the way the optimizer works, let us consider

6 http://xquerybang.cs.washington.edudb.cs.uwashington.edu/

10

the following variant of XMark query 8 which, for each person, stores information about the
buyers who purchased its items.

for $p in $auction//person
let $a :=

for $t in $auction//closed_auction
where $t/buyer/@person = $p/@id
return (insert { <buyer person="{$t/buyer/@person}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }, $t)

return <item person="{ $p/name }">{ count($a) }</item>

Ignoring the insert operation for a moment, the query is identical to XMark 8, and can be
evaluated efficiently with an outer join followed by a group by. Such a query plan can be pro-
duced using query unnesting techniques such as those proposed in e.g., [21]. Naively evalu-
ated, this query has complexity O(|person|∗|closed auction|). Using an outer join/group by
with a typed hash join, we can recover the join complexity of O(|person|+|closed auction|+
|matches|), resulting in a substantial improvement.

In XQuery!, recall that the query is always wrapped into a top-level snap. Because that
top-level snap does not contain any nested snap, the state of the database will not change
during the evaluation of the query, and a outer-join/group-by plan can be used. The optimized
plan generated by our XQuery! compiler is shown below. The syntax of the query plan is a
simplified version of that defined in [21].

Snap {
MapFromItem {

<person name="{ Input#p/name }">{ count(Input#a) }</person>
}
(GroupBy [Input#p, {

(insert { <buyer person="{Input#t/buyer/@person}"
itemid="{Input#t/itemref/@item}" /> }

as last into { $purchasers }, Input#t) }]
(LeftOuterJoin(MapFromItem{[p:Input]}

($auction//person),
MapFromItem{[t:Input]}

($auction//closed_auction))
on { Input#t/buyer/@person = Input#p/@id }

)
)

}

In general, the optimization rules must be guarded by appropriate preconditions to ensure
that not only the resulting value is correct, but also that the order (when applicable) and
side-effects are preserved. Those preconditions check for properties related to cardinality and
a form of query independence. The former ensures that expressions are evaluated with the
correct cardinality, as changing the number of invocation may change the number of effects
applied to the data model. The latter is used to check that a part of the query cannot observe
the effects resulting from another part of the query, hence allowing certain rewritings to occur.

More specifically, consider the compilation of a join from nested for loops (maps): We
must check that the inner branch of a join does not have updates. If the inner branch of the join
does have update operations, they would be applied once for each element of the outer loop.
Merge join and hash joins are efficient because they only evaluate their inputs once, however

11

doing so may change the cardinality for the side-effect portion of the query. Additionally,
we must ensure that applying these new updates does not change the values returned in the
outer branch, thus changing the value returned by the join. The first problem requires some
analysis of the query plan, while the latter is difficult to ensure without the use of snap. In
our example, if we had used asnap insert at line 5 of the source code, the group-by
optimization would be more difficult to detect as one would have to know that the effect
of the inserts are not observed in the rest of the query. This bears some similarity with the
technique proposed in [1], although it is applied here on a much more expressive language.

5 Related work

Nested transactions.The snap operator is reminiscent of transactions, since both, in a
sense, group update requests and apply them all at once; moreover, both can be nested. How-
ever, their purpose and semantics is essentially orthogonal.

Flat transactions are meant to protect a piece of code from concurrently running trans-
actions, and nested transactions also allow the programmer to isolate different concurrent
threads in its own code. XQuery has no internal concurrency, and we assume here that ex-
ternal concurrency is dealt with by the system that runs XQuery!, typically by running the
top-level expression in its own (flat) transaction. Nested transactions are also used to con-
trol the extent of failure propagation. We propose a similar use for thesnap operator, with
no pretence of originality, in [12]. However,snap as presented here has nothing to do with
either concurrency or failures.

On the other side, without concurrency and failures, transactions have no effect. In par-
ticular, after a transaction updatesx, its next query tox will return the new value. On the
contrary, an update tox requested inside asnap scope will not affect the result of queries
to x inside the same scope. Hence, transactions isolate against external actions, whilesnap
delays internal actions.

Monads in pure functional languages.Our approach allows the programmer to write es-
sentially imperative code containing code fragments which are purely functional, and hence
can be optimized more easily. The motivation is similar to that of monadic approaches in
languages such as Haskell [14]. There, the type system distinguishes pieces of pure code,
which can be lazily evaluated, from inpure “monadic” pieces of code, whose evaluation order
is constrained. The type system will not allow pure code to call monadic code, while monadic
code may invoke pure code at will.

The semantics of XQuery! bang requires to go beyond the pure-inpure distinction, no-
tably requiring to distinguish the case where the query has some pending update but no ef-
fect. Those pieces of code in XQuery! do not block every optimizations, provided that some
“independence” constraints are verified. It seems that these constraints are too complex to be
represented through types. Hence, we let the optimizer collect the relevant information, and
in particular flag the scope of each innermostsnap aspure. To be fair, we believe that a bit of
typing would be useful: the signature of functions coming from other modules should contain
an updatingflag, with the “monadic” rule that a function that calls an updating function is
updatingas well.

We are currently investigating the systematic translation of XQuery! to a core monadic
language, which should give us a more complete understanding of the relationship between
the two approaches.

12

Finally, the optimization opportunities enabled by the snapshot semantics are explored
in [1]. An important difference is that we consider similar optimization in the context of a
fully compositional language.

6 Conclusion

We presented here an extension of XQuery 1.0 which supports programmer-controlled de-
lay of update application, in order to combine the expressive power of side-effects with the
optimizability of side-effect free code fragments. The esential feature of this proposal is the
free nesting of thesnap operator, and we described the semantics and implementation of
this operator. The proposal leaves many issues open for further investigation, such as static
typing, optimization, and transactional mechanisms.

Acknowledgments.We want to thank the members of the W3C XML Query working group
update task for numerous discussion on update languages which had a strong influence on our
work. Thanks to Daniela Florescu, Don Chamberlin, Ioana Manolescu, Andrew Eisenberg,
Kristoffer Rose, Mukund Raghavachari, Rajesh Bordawekar, and Michael Benedikt for their
feedback on earlier versions of this draft. Special thanks go to Dan Suciu for proposingsnap
as the keyword used in XQuery!.

References

1. Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash Vyas. Adding updates to XQuery:
Semantics, optimization, and static analysis. InXIME-P’05, 2005.

2. Bard Bloom. Lopsided little languages: Experience with XQuery. InXIME-P’05, 2005.
3. Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and Jérôme

Simeon. XQuery 1.0: An XML query language. W3C Working Draft, April 2005.
4. Don Chamberlin. Communication regarding an update proposal. W3C XML Query Update Task

Force, May 2005.
5. Don Chamberlin and Jonathan Robie. XQuery update facility requirements. W3C Working Draft,

June 2005.
6. Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristoffer Rose, Michael Rys,

Jer̂ome Siḿeon, and Philip Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C Working
Draft, Aug 2004.http://www.w3.org/TR/query-semantics .

7. Daniela Florescu et al. Communication regarding an XQuery update facility. W3C XML Query
Working Group, July 2005.

8. Don Chamberlin et al. Communication regarding updates for XQuery. W3C XML Query Working
Group, October 2002.

9. Mary Ferńandez, Jer̂ome Siḿeon, and Philip Wadler.XQuery from the experts, chapter Introduction
to the Formal Semantics. Addison Wesley, 2004.

10. Daniela Florescu. Communication regarding update grammar. W3C XML Query Update Task
Force, April 2005.

11. Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: An XML programming lan-
guage for Web service specification and composition. InProceedings of International World Wide
Web Conference, pages 65–76, May 2002.

12. Giorgio Ghelli, Christopher Ŕe, and J́erôme Siḿeon. XQuery!: An
XML query language with side effects, full paper, September 2005.
www.di.unipi.it/˜ghelli/papers/XQueryBangTR.pdf .

13. Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A light but formal introduction
to XQuery. InDatabase and XML Technologies (XSym), pages 5–20, May 2004.

13

14. Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, exceptions,
and foreign-language calls in Haskell. In ”Engineering theories of software construction”, ed Tony
Hoare, Manfred Broy, Ralf Steinbruggen, IOS Press, 2001.

15. Andreas Laux and Lars Matin. http://www.xmldb.org/xupdate, October 2000.
16. Patrick Lehti. Design and implementation of a data manipulation processor for an XML query

processor, Technical University of Darmstadt, Germany, Diplomarbeit, 2001.
17. Xavier Leroy.The Objective Caml system, release 3.08, Documentation and user’s manual. Institut

National de Recherche en Informatique et en Automatique, july 2004.
18. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The definition of Standard ML

(revised). MIT Press, 1997.
19. Nicola Onose and Jérôme Siḿeon. XQuery at your Web service. InProceedings of International

World Wide Web Conference, New York, NY, May 2004.
20. Christopher Ŕe, Jerome Simeon, and Mary Fernandez. A complete and efficient algebraic compiler

for XQuery. Technical report, AT&T Labs Research, 2005.
21. Christopher Ŕe, Jerome Simeon, and Mary Fernandez. A complete and efficient algebraic compiler

for XQuery. InICDE, Atlanta,GA, April 2006.
22. Michael Rys. Proposal for an XML data modification language, version 3, May 2002. Microsoft

Corp., Redmond, WA.
23. A. Schmidt, F. Waas, M. Kersten, M. Carey, Ioana Manolescu, and Ralph Busse. XMark: A bench-

mark for XML data management. InVLDB, pages 974–985, August 2002.
24. Gargi M. Sur, Joachim Hammer, and Jérôme Siḿeon. An XQuery-based language for processing

updates in XML. InPLAN-X, 2004.
25. I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. InSIGMOD, 2001.

14

A Grammar

Figure 1 shows the grammar of XQuery!, which extends the grammar of XQuery 1.0 expres-
sions. “snap insert {} into {}” abbreviates “snap {insert {} into {}}”, and simi-
larly for the other update primitives.

Expr ::= . . . | DeleteExpr | InsertExpr | ReplaceExpr | RenameExpr
| CopyExpr | SnapExpr

DeleteExpr ::= snap ? delete { Expr }

InsertExpr ::= snap ? insert { Expr } InsertLocation
InsertLocation::= (as first | as last)? into { Expr }

| before { Expr }
| after { Expr }

ReplaceExpr ::= snap ? replace { Expr } with { Expr }

RenameExpr ::= snap ? rename { Expr } to { Expr }

CopyExpr ::= copy { Expr }

SnapExpr ::= snap (nondeterministic | ordered)? { Expr }

Fig. 1.XQuery! Grammar

B Language Semantics

We present here the semantics of all the update operators of XQuery! and of the most im-
portant XQuery 1.0 operators, enriched in order to specify their effect of the store and on the
delta list. This semantics imposes an evaluation order for each operator.

The metavariablesnode, nodei (for anyi), nodepar, nodeposrange over node ids,nodeseq
ranges over node id sequences, andnameranges over qnames. The metavariables arenorma-
tive, i.e. they express constraints on rule applicability. This means that, if a judgment in the
premise usesnodein the result position, as in:

store0; dynEnv` Expr ⇒ node; ∆1; store1,

the judgment can only be applied ifExpr evaluates to a value which is a node.

15

store0; dynEnv` Expr ⇒ node1; ∆1; store1
(store2, node2) = deepcopy(store1, node1)

store0; dynEnv` copy { Expr} ⇒ node2; store2; ()

store0; dynEnv` Expr ⇒ value; ∆; store1
store2 = apply∆ to store1

store0; dynEnv` snap { Expr} ⇒ value; (); store2

store0; dynEnv` Expr1 ⇒ node; ∆1; store1
store1; dynEnv` Expr2 ⇒ name; ∆2; store2

∆3 = (∆1, ∆2, rename(node, name))

store0; dynEnv` rename { Expr1} to { Expr2} ⇒ (); ∆3; store2

store0; dynEnv` Expr1 ⇒ node; ∆1; store1
store1; dynEnv` Expr2 ⇒ nodeseq; ∆2; store2

store2; dynEnv` parent(node) ⇒ nodepar; (); store2
∆3 = (∆1, ∆2, insert(nodeseq, nodepar, node), delete(node))

store0; dynEnv` replace { Expr1} with { Expr2} ⇒ (); ∆3; store2

store0; dynEnv` Expr ⇒ node; ∆1; store1
∆2 = (∆1, deletenode)

store0; dynEnv` delete { Expr} ⇒ (); ∆2; store1

store0; dynEnv` Expr1 ⇒ nodeseq; ∆1; store1
store1; dynEnv` Expr2 ⇒ node2; ∆2; store2

store2; dynEnv` InsertLocation node2 ⇒ (nodepar, nodepos); (); store2
∆3 = (∆1, ∆2, insert(nodeseq, nodepar, nodepos))

store0; dynEnv` insert { Expr1} InsertLocation { Expr2} ⇒ (); ∆3; store2

Insert Location Judgments:

store0; dynEnv` as last into { node} ⇒ (nodepar, nodepos); store0; ()

store0; dynEnv` into { node} ⇒ (nodepar, nodepos); store0; ()

store0; dynEnv` as first into { node} ⇒ (node, node); store0; ()

store0; dynEnv` last child otherwiseself(node) ⇒ (nodepos); store0; ()

store0; dynEnv` as last into { node} ⇒ (node, nodepos); store0; ()

store0; dynEnv` parent(node) ⇒ (nodepar); store0; ()

store0; dynEnv` after { node} ⇒ (nodepar, node); store0; ()

store0; dynEnv` is first child(node) ⇒ true; store0; ()
store0; dynEnv` parent(node) ⇒ nodepar; store0; ()

store0; dynEnv` before { node} ⇒ (nodepar, nodepar); store0; ()

store0; dynEnv` is first child(node) ⇒ false; store0; ()
store0; dynEnv` parent(node) ⇒ nodepar; store0; ()

store0; dynEnv` precedingsibling(node) ⇒ nodepos; store0; ()

store0; dynEnv` before { node} ⇒ (nodepar, nodepos); store0; ()

Fig. 2.XQuery! Semantics of Update Operations

16

store0; dynEnv` Expr1 ⇒ item1, . . . , itemm; ∆; store1
for i in 1 . . . m : storei; (dynEnv+ x ⇒ itemi) ` Expr2 ⇒ valuei; ∆i; storei+1

∆′ = (∆, ∆1, . . . , ∆m)

store0; dynEnv` for x in { Expr1} return Expr2 ⇒ value1, . . . , valuen; ∆′; storem+1

(f ⇒ fun(x1, . . . , xm, Expr) : T1, . . . , Tn→T) ∈ funEnv
for j in 1 . . . m : storej ; dynEnv` Exprj ⇒ valuej ; ∆j ; storej+1

storem+1; (dynEnv+ x1 ⇒ value1 + . . . + xm ⇒ valuem) ` Expr ⇒ value′; ∆; storem+2

∆′ = (∆1, . . . , ∆m, ∆)

store1; dynEnv` f(Expr1, . . . , Exprm) ⇒ value′; ∆′; storem+2

store; dynEnv` Expr1 ⇒ name; ∆; store1
store1; dynEnv` Expr2 ⇒ value; ∆; store2

(store3, node) = NewElement (store2, name, value)

store; dynEnv` element{ Expr1}{ Expr2} ⇒ node; ∆; store3

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

∆ = (∆1, ∆2)

store; dynEnv` Expr1, Expr2 ⇒ value1, value2; ∆; store2

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; (dynEnv+ x ⇒ value1) ` Expr2 ⇒ value2; ∆2; store2

∆ = (∆1, ∆2)

store; dynEnv` let x := Expr1 return Expr2 ⇒ value2; ∆2; store2

store; dynEnv` Expr ⇒ true ; ∆1; store1
store1; dynEnv` Expr1 ⇒ value; ∆2; store2

∆ = (∆1, ∆2)

store; dynEnv` if Expr then Expr1 else Expr2 ⇒ value; ∆; store2

store; dynEnv` Expr ⇒ false ; ∆1; store1
store1; dynEnv` Expr2 ⇒ value; ∆2; store2

∆ = (∆1, ∆2)

store; dynEnv` if Expr then Expr1 else Expr2 ⇒ value; ∆; store2

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

b = equal (value1, value2)
∆ = (∆1, ∆2)

store; dynEnv` Expr1 = Expr2 ⇒ b; ∆; store2

Fig. 3.XQuery! Semantics of Non-Update Operations

