
Efficient Evaluation of HAVING Queries
on a Probabilistic Database

University of Washington TR: #2007-06-01

Christopher Ré and Dan Suciu

Department of Computer Science and Engineering
University of Washington

{chrisre,suciu}@cs.washington.edu

Abstract. We study the evaluation of positive conjunctive queries with Boolean
aggregate tests (similar to HAVING queries in SQL) on probabilistic databases.
Our motivation is to handle aggregate queries over imprecise data resulting from
information integration or information extraction. More precisely, we study con-
junctive queries with predicate aggregates using MIN, MAX, COUNT, SUM, AVG or
COUNT(DISTINCT) on probabilistic databases. Computing the precise output prob-
abilities for positive conjunctive queries (without HAVING) is]P-hard, but is in P
for a restricted class of queries called safe queries. Further, for queries without
self-joins either a query is safe or its data complexity is]P-Hard, which shows
that safe queries exactly capture tractable queries without self-joins. In this pa-
per, for each aggregate above, we find a class of queries that exactly capture
efficient evaluation for HAVING queries without self-joins. Our algorithms use a
novel technique to compute the marginal distributions of elements in a semiring,
which may be of independent interest.

1 Introduction

We study the complexity of evaluating aggregate queries on probabilistic databases. Our
motivation is managing data resulting from integration applications, e.g. object recon-
ciliation [?,?,?] and information extraction [?,?,?,?]. Standard approaches require that
we eliminate all uncertainty before any querying can begin, which is expensive in both
man-hours to perform the integration and in lost revenue due to down time. An alterna-
tive approach where data are allowed to be uncertain but we capture uncertainty using
probabilities has attracted renewed interest [?,?,?,?,?,?]. In such systems, individual
tuples are allowed to be incorrect, but aggregations of tuples still provide meaningful
information.

In SQL, aggregates come in two forms: value aggregates that are returned to the
user in the SELECT clause (e.g. the MAX price) and predicate aggregates that appear in
a HAVING clause (e.g. is the MAX price greater than $10.00?). In this paper, we focus on
positive conjunctive queries with a single predicate aggregate which we call HAVING
queries. Prior art [?,?] has defined a semantic for value aggregation that returns the ex-
pected value of an aggregate query (e.g. the expected MAX price) and have demonstrated
its utility for Decision Support or OLAP style applications. In this paper, we propose

a complementary semantic for predicate aggregates inspired by HAVING (e.g. what is
the probability that the MAX price is bigger than $10.00?). We illustrate the difference
between the approaches with a simple example:

Example 1. Consider a probabilistic database with a Profit relation that contains the
profit forecasted for each item if we continue to sell it:

Item Forecaster Profit P

Widget Alice $−99K 0.99
Bob $100M 0.01

Whatsit Alice $1M 1

SELECT SUM(PROFIT)

FROM PROFIT

WHERE ITEM=‘Widget’

SELECT ITEM

FROM PROFIT

WHERE ITEM=‘Widget’

HAVING SUM(PROFIT) > 0.0

Profit(Item;Forecaster,Profit;P) (a) Expectation Style (b) HAVING Style

Profit is an example of BID relation which captures our uncertain about contra-
dictory and incompatible forecasts. Here, we trust Alice’s forecast (probability 0.99)
more than Bob’s (0.01). Prior art [?] considered aggregate queries in the SELECT clause
such as (a). Their semantic computes the expected profit. Using linearity of expectation,
the value of query (a) is 100M * 0.01 + −99K * 0.99 ≈ 900K. This large value suggests
that we should continue selling widgets because we expect to make money. However,
if we asked the HAVING style query (b), which says: What is the chance that we will
make a profit? The answer is only 0.01, which tells us that we should immediately stop
selling widgets or risk going out of business.

Prior work [?,?,?] has shown that for Boolean conjunctive queries without HAVING,
computing a query’s probability is]P-Complete1. Although in general evaluating con-
junctive queries on a probabilistic database is hard, there are a class of queries that can
be computed efficiently called safe queries [?,?]. In this paper, for each aggregate α, we
find a class of HAVING queries called α-safe that can be evaluated efficiently. Further,
we show that there is a dichotomy for queries without self-joins: Either Q is α-safe, and
has an algorithm in P, or Q is not α-safe and is]P-Hard.

Our starting observation is that evaluating a query with a value aggregate with ag-
gregate α on a traditional database can be computed by annotating the database with
values from some semiring, S α, then computing the annotations returned by a the query
by evaluating any algebra plan P over the semiring, using the rules in [?]. Therefore
the output of an aggregate function α on a probabilistic database is described by a ran-
dom variable sQ with values in S α, and a HAVING query Q whose predicate is, say,
COUNT(∗) < k, can be computed over the probabilistic database in two stages: first
compute the random variable sQ, second apply some recovery function that computes
the probability sQ < k. The cost of this algorithm depends on the space required to
represent random variables sQ, which is proportional to the set of possible worlds of
the probabilistic database and hence is prohibitively high. Our key technical insight is
that if the plan P is a safe plan then the random variable sQ can be computed using a

1]P defined by Valiant [?] is the class of functions that contains the problem of counting the
number of solutions to NP-Hard problems (e.g. #3-SAT).

2

much more concise representation called a marginal vector, because P can guarantee
that the random variables being combined are either independent or disjoint. In addition
we need to impose an extra condition on P to ensure that the recovery function can be
computed from the marginal vector representation of sQ, and we call this condition plus
the safety condition for the plan P, which depends on α, α-safety.

Contributions and Overview We study conjunctive queries with HAVING predicates
where the aggregation function is given by MIN, MAX, COUNT, SUM, AVG or COUNT(DISTINCT)
and the aggregate test is one of =,,, <,≤, >, or ≥ on common representations of prob-
abilistic databases [?,?,?]. In Sec. 2, we formalize HAVING queries, our choice of rep-
resentation and define efficient evaluation. In Sec. 3, we review the relevant technical
material (e.g. semirings and safe plans). In Sec. 4, we give our main results: For each
aggregate α, we find a class of HAVING queries, called α-safe, such that for any Q using
α:

– If Q is α-safe then Q’s data complexity is in P.
– If Q has no self-joins and is not α-safe then, Q has]P-hard data complexity.
– It can be decided in polynomial time in the size of Q if Q is α-safe.

2 Formal Problem Description

We first define the syntax and semantics of HAVING queries on probabilistic databases
and then define the problem of evaluating HAVING queries.

Semantics We consider the aggregates MIN, MAX, COUNT, SUM, AVG and COUNT(DISTINCT)
as functions on multisets with the obvious semantics.

Definition 1. A Boolean conjunctive query is a single rule q = g1, . . . , gm where each
gi is a positive EDB predicate. A Boolean HAVING query is a single rule:

Q[α(y) θ k] D g1, . . . , gn

where for each i, gi is a positive EDB predicate, α ∈ {MIN, MAX, COUNT, SUM, AVG,
COUNT(DISTINCT)}, y is a single variable2, θ ∈ {=,,, <,≤, >,≥} and k is a constant.
The set of variables in the body of Q is denoted var(Q). We assume that y ∈ var(Q).
The conjunctive query q = g1, . . . , gn, is called the skeleton of Q, denoted sk(Q) = q.
We call θ the predicate test, k, the predicate operand and a pair (α, θ) an aggregate
test.

Fig. 1(a) shows a SQL query with a HAVING predicate, that asks for all movies
reviewed by at least two distinct reviewers. A translation of this query into an extension
of our syntax is shown in Fig. 1(b). The translated query is not a Boolean HAVING
query because it has a head variable (d). In this paper, we discuss only Boolean HAVING
queries. However, as is standard, to study the complexity of non-boolean queries, we
can substitute constants for head variables. For example, if we substitute ‘M. Ritchie’
for d, then the result is Fig. 1(c) which is a Boolean HAVING query.

2 For COUNT, we will omit y and write the more familiar COUNT(∗) instead.

3

SELECT m.Title
FROMMovieMatch m, Reviewer r
WHERE m.ReviewTitle = r.ReviewTitle
GROUP BY m.Title
HAVING COUNT(DISTINCT r.reviewer) ≥ 2

Q(m)[COUNT(DISTINCT y) ≥ 2] D
MovieMatchp(t,m),
Reviewerp(−, r, t)

Q[COUNT(DISTINCT y) ≥ 2] D
MovieMatchp(‘Fletch’,m),
Reviewerp(−, r, t)

(a) SQL Query (b) Extended Sytanx (Non Boolean) (c) Syntax of this paper

Fig. 1. A translation of the query “Which moviews have been reviewed by at least 2 distinct
reviewers?” into SQL and the syntax of this paper.

Definition 2. Given a HAVING query Q[α(y) θ k] and a relational instance W, let

Y = {| v(y) | v is a valuation for Q and im(v) ⊆ W |}

i.e. Y is the multiset of all valuations of Q applied to y. We say that Q is satisfied on W
and write W |= Q[α(y) θ k] (or simply W |= Q) if Y , ∅ and α(Y) θ k holds.

Probabilistic Databases In this paper, we will use probabilistic databases described
in the block-independent disjoint (BID) representation [?,?] which generalizes many
representations in the literature including p-?-sets and p-or-sets [?], ?- and x-relations
[?] and tuple independent databases [?,?] and is similar to [?].

Syntax A BID schema has relational schemas of the form R(K; A; P) with its attributes
partitioned into three classes separated by semicolons: the possible worlds key (K), the
value attributes (A), and a single distinguished probability attribute P taking values in
(0, 1]. The corresponding possible worlds schema has relations of the form R(K; A),
i.e. the same schema without the attribute P.

Semantics Let J be an instance of a BID schema. We denote by t[KAP] a tuple in
J, emphasizing its three kinds of attributes, and call t[KA], its projection on the KA
attributes, a possible tuple. Define a possible world, W, to be any instance consisting of
possible tuples s.t. K is a key in W. Note that the key constraints do not hold in J, but
do hold in any possible world. LetWJ be the set of all possible worlds. We define the
semantics of BID instances only for valid instances, which are instances J s.t. for every
tuple t ∈ RJ in any BID relation R(K; A; P) the inequality

∑
s∈R:s[K]=t[K] s[P] ≤ 1 holds.

For a valid instance J its semantics is a finite probability space (WJ , µJ). First note that
any possible tuple t[KA] can be viewed as an event in the probability space (WJ , µJ),
namely the event that a world contains t[KA]. Then we define the semantics of J to
be the probability space (WJ , µJ) s.t. (a) the marginal probability of any possible tuple
t[KA] is t[P], (b) any two tuples from the same relation t[KA], t′[KA] s.t. t[K] = t′[K]
are disjoint events (a.k.a. exclusive events), and (c) for any set of tuples {t1, . . . , tn} s.t.
all tuples from the same relation have distinct keys, the events defined by these tuples
are independent.

Example 2. The data in Fig. 2 shows an example of a BID representation that stores data
from integrating extracted movie reviews (e.g. from USENET) with a movie database

4

Title Matched P
‘Fletch’ ‘Fletch’ 0.98 m1

‘Fletch’ ‘Fletch 2’ 0.9 m2

‘Fletch 2’ ‘Fletch’ 0.4 m3

‘The Golden Child’ ‘The Golden Child’ 0.95 m4

‘The Golden Child’ ‘Golden Child’ 0.8 m5

‘The Golden Child’ ‘Wild Child’ 0.2 m6

ReviewID Reviewer Title P

231 ‘Ryan’
‘Fletch’ 0.7 t231a

‘Spies Like Us’ 0.3 t231b

232 ‘Ryan’
‘European Vacation’ 0.90 t232a

‘Fletch 2’ 0.05 t232b

235 ‘Ben’
‘Fletch’ 0.8 t235a

‘Wild Child’ 0.2 t235b

MovieMatch(CleanTitle,ReviewTitle;P) Reviews(Reviewer,ReviewTitle;Rating;P)

Fig. 2. Sample Data arising from integrating automatically extracted reviews from a movie
database. MovieMatch is a probabilistic relation, we are uncertain which review title matches
with which movie in our clean database. Reviews is uncertain because it is the result of informa-
tion extraction and sentiment analysis.

(e.g. IMDB). The MovieMatch table is uncertain because it is the result of an auto-
matic matching procedure. For example, the probability a review title ‘Fletch’ matches
a movie titled ‘Fletch’ is very high 0.95, but not 1 because the title is extracted from
text and so may contain errors: For example, from ‘The second Fletch movie’, our ex-
tractor will likely extract just ‘Fletch’ although this review actually refers to ‘Fletch 2’.
The review table is uncertain because it is the result of information extraction and so
we have extracted the title from free text (e.g. ‘Fletch is a great movie, just like Spies
Like Us’). Notice that t232a[P] + t232b[P] = 0.95 < 1, which indicates that there is some
probability reviewid 232 is actually not a review at all.

Remark 1. Recall that two distinct possible t[KA] and t′[KA] are disjoint if t[K] , t′[K]
and t[A] = t′[A]. But what happens if A = ∅, i.e. all attributes are part of the possible
worlds key ? In that case all possible tuples become independent, and we sometime call
a table R(K; ; P) a tuple independent table [?] or a ?-table [?] or a p-?-table [?].

Queries are posed over the possible worlds schema. For clarity, we denote such
relations with a superscripted p (e.g. Reviewsp).

Definition 3 (Query Semantics). The marginal probability of a HAVING query Q on
BID database J is denoted µJ(Q) (or simply µ(Q)) and is defined by:

µJ(Q) =
∑

W∈WJ :W |=Q

µJ(W)

We also make use of µJ(q) where q is a Boolean conjunctive query with the standard
semantics.

Example 3. Fig. 1(c) shows a query which asks for all movies that were reviewed by at
least 2 different reviewers. The movie ‘Fletch’ is present when the formula is satisfied
(m1∧t231a)∨(m2∧t232b)∨(m1∧t235a) and the multiplicity of tuples is exactly the number
of disjuncts satisfied. Thus, µ(Q) is the probability that at least two of these disjuncts
are true, which semantically can be computed by summing over all possible worlds.

5

Notions of complexity for HAVING queries In the database tradition, we would like to
measure the data complexity [?], i.e. treat the query as fixed, but allow the data to grow.
This assumption makes sense in practice because the running time for query evaluation
can be O(n f (|Q|)) where |Q| is the size of a conjunctive query Q. This exponential running
time is considered to be tenable in practice, because database queries are generally
small. However, in our setting this introduces a problem. By fixing a HAVING query q
we also fix k, which means that we should accept a running time nk as efficient. Clearly
this is undesirable: because k can be large. For example, Q()[SUM(y) > 200] D R(x, y).
For that reason we consider in this paper an alternative definition of the data complexity
of HAVING queries, where both the database and k are port of the input.

Definition 4. Fix a skeleton q, an aggregate α, and a comparison operator θ. The query
evaluation problem is: given as input the encoding of a BID representation J, and a
binary representation of k > 0, calculate µJ(Q), where Q[α θ k] is such that sk(Q) = q.

The technical problem we address in this work is the complexity of query evalua-
tion. We shall see for the query in Ex. 3, that the query evaluation problem is hard for
]P. And moreover, this is the general case for all HAVING queries.

3 Preliminaries

We review here some basic facts on semirings (mostly from [?] and introduce random
variables over semirings.

3.1 Background: Random Variables on Semirings

Definition 5. A monoid (S ,+, 0) is a set S and + is an associative binary operation
with identity, 0. A semiring is a structure (S ,+, ·, 0, 1) where (S ,+, 0) is a commutative
monoid with identity 0, (S , ·, 1) is a monoid with identity 1, · distributes over + and 0
annihilates S . A commutative semiring is one in which (S , ·, 1) forms a commutative
monoid. We abbreviate either structure with the set S when clear from the context.

We shall consider only commutative semirings in this paper.

Example 4. For integer k ≥ 0, let Zk+1 = {0, 1, . . . , k} then for every such k, (Zk,max,min, 0, k)
is a semiring. In particular, k = 2 is the Boolean semiring. Another set of semirings we
consider, Sk = (Zk,+k, ·k, 0, 1) where +k(x, y) = min(x + y, k) and ·k = min(xy, k) where
addition and multiplication are in Z.

For the rest of this section fix a BID instance J, and denote (W, µ) = (WJ , µJ) the
probability space induced by J on possible worlds.

Definition 6. Given a semiring (S ,+S , ·S), an S -random variable, r, is a function r :
W → S . Given two random variables r, s then r +S s and r ·S s are random variables
defined as (r +S s)(W) = r(W) +S s(W) and (r ·S s)(W) = r(W) ·S s(W).

In the sequel, we make use of the following fact:

6

Fact 1 The set of S -random variables on a fixed BID instance J induces a semiring,
denoted S J , with the operations in Def. 6.

Definition 7. Given a semiring S and a set of random variables R = {r1, . . . , rn} on S ,
R is independent if ∀N ⊆ 1, . . . , n and any set k1, . . . , kn ∈ S , we have µ(

∧
i∈N ri = ki) =∏

i∈N µ(ri = ki). We say that R is disjoint if for any i , j we have µ((ri , 0)∧ (r j , 0)) =
0.

To represent a single random variable we need space as large as |W|, which is
exponential in the size of the J and thus prohibitive for most applications. However,
there exists an alternative representation in terms of marginal vectors, which only takes
size S .

Definition 8. Given a random variable r on S , the marginal vector (or simply, the
marginal) of r is denoted mr and is a vector indexed by S defined by ∀s ∈ Sµ(r =
s) = mr[s]. Given a monoid (S ,+S , 0), the monoid convolution is a binary operation
on marginals denoted
+S , and for any marginals mr and mt is defined by

∀s ∈ S (mr

+S mt)[s] def

=
∑

i+S j=k
i, j∈S

mr[i]mt[j]

The disjoint operation for (S , 0) is denoted mr ⊥ ms and is defined by

if s , 0 (mr ⊥ ms)[s] def
= mr[s] + ms[s] else (mr ⊥ ms)[0] def

= (mr[0] + ms[0]) − 1

The next proposition tells us when the operations defined in the previous definition
yield the correct results:

Proposition 1. If r and s are random variables on the monoid (S ,+S , 0) with marginal
vectors mr and ms then let mr+S s denote the marginal of r+S s. If r and s are independent
then mr+S s = mr

+S ms. If r and s are disjoint then mr+S s = mr ⊥ ms. Further, the

n-fold convolution can be computed in time O(n|S |2) and the n-fold disjoint operation
can be computed in O(n|S |).

The importance of this proposition is that if the semiring is small, then each opera-
tion can be done efficiently.

Example 5. Consider the Boolean semiring, and two random variables r and s with
marginal probabilities (of truth) pr and ps. Then mr = (1− pr, pr) and ms = (1− ps, ps).
If r and s are independent then, the distribution of r∨ s = r+S s which can be computed
using r
+ s. This satisfies (r
+ s)[1] = pr(1 − ps) + (1 − pr)ps + pr ps or in a more
familiar form, mr

+ ms = ((1 − pr)(1 − ps), 1 − (1 − pr)(1 − ps)).

7

3.2 Background: Queries on databases annotated from a semiring

In this section, we review material from [?] on computing queries on databases anno-
tated with semiring elements. A slight twist on prior art is that we allow the query to
induce the annotations as a first step, rather than being part of the data.

Definition 9. Given a commutative semiring S and a Boolean conjunctive query q =
g1, . . . , gn, an annotation is a set of functions indexed by subgoals, such that for i =
1, . . . , n, τgi is a function on tuples that unify with gi to S . We denote the set of annotation
functions with τ.

As in [?], we compute the annotation using a modified relational algebra which we
define below:

Definition 10.

– a plan P is inductively defined as (a) a single subgoal (b) π−xP1 if P1 is a plan (b)
P1 Z P2 if P1, P2 are plans.

– var(P), the variables output by P, is defined as var(g) if P = g, var(π−xP) =
var(P) − {x} and var(P1 Z P2) = var(P1) ∪ var(P2).

– goal(P), the set of subgoals in P, is defined as (a) goal(g) = {g}, (b) goal(π−xP1) =
goal(P1) (c) goal(P1 Z P2) = goal(P1) ∪ goal(P2).

The value of a plan P on a standard instance W is a set of tuples with attributes
corresponding to the variables in var(P) each annotated with a semiring element, de-
noted ωW

P (t), which is defined inductively below. Concurrently, we define the support
of a tuple suppP,V (t) = {t′ | ∀y ∈ V t[y] = t′[y] ∧ ωW

P (t′) , 0} where P is a plan, V is
a set of variables such that V ⊆ var(P), t is a tuple with attributes corresponding to V
and t′ is a tuple with attributes corresponding to var(P).

– If P = g then if t unifies with g then ωW
P (t) = τg(t) else ωW

P (t) = 0.
– If P = π−xP1, then ωW

π−xP1
(t) =

∑
t′∈suppW

P1 ,var(P)(t)
ωW

P1
(t′).

– else P = P1 Z P2 and for i = 1, 2 let ti be t restricted to var(Pi) then ωW
P1ZP2

(t) =
ωW

P1
(t1) · ωW

P2
(t2)

A result of [?] shows thatωW
P is independent of the choice of plan P, which justisfies

the notation sτ,W,q, the value of a conjunctive query q on a determinsitic instance W

under annotation τ defined as sτ,W,q
def
= ωW

P () where P is any plan for q where and ωW
P is

applied to the empty tuple.

4 Approaches for HAVING

In this section, we define the α-safe HAVING queries for α ∈ {MIN, MAX, COUNT} in
Sec. 4.3, for α = COUNT(DISTINCT) in Sec. 4.4 and α ∈ {AVG, SUM} in Sec. 4.5.

8

4.1 Aggregates and semirings

We explain the details of computing HAVING queries using semirings on determinis-
tic databases, which immediately generalizes to probabilistic databases. Since HAVING
queries are Boolean, we use a function ρ, the recovery function, which maps semiring
values to true if that value would satisfy the HAVING query. Fig. 3 lists the (commu-
tative) semirings for the aggregates in this paper, their annotations τ and a Boolean
recovery function ρ. EXIST is similar to the safe plan algebra of [?,?,?].

HAVING Predicate Semiring Annotation τg∗ (t) Recovery ρ(s)
EXISTS (Z2,max,min) 1 s = 1
MIN(y) {<,≤} k (Z3,max,min) if t θ k then 2 else 1 s = 2
MIN(y) {>,≥} k (Z3,max,min) if t θ k then 1 else 2 s = 1
MIN(y) {=,,} k (Z4,max,min) if t < k then 3 else

if t = k then 2 else 1
if = then s = 2
if , then s , 2

COUNT(∗) θ k Sk+1 1 (s , 0) ∧ (s θ k)
SUM(y) θ k Sk+1 t[y] (s , 0) ∧ (s θ k)

Fig. 3. Semirings for the operators MIN, COUNT and SUM. Let g∗ be the lowest indexed subgoal
such that contains y. For all g , g∗, ∀t, τg(t) equals the multiplicative identity of the semiring.

Let Zk+1 = {0, 1, . . . , k} and +k(x, y) def
= min(x + y, k) and ·k

def
= min(xy, k), where x, y ∈ Z. Let

Sk
def
= (Zk+1,+k, ·k, 0, 1). MAX and MIN are symmetric. AVG and COUNT(DISTINCT) are omitted.

Example 6. Consider the query Q[MIN(y) ≥ 10] D R(y) where R = {t1, . . . , tn}. Fig. 3
tells us to use the semiring (Z3,max,min). We first apply τ: τ(ti) = 1 represents that
ti[y] > 10 while τ(ti) = 2 represents that zi[y] ≤ 10. Let s =

∑S
i=1,...,m τ(ti) = maxi=1,...,m τ(ti).

ρ(s) is satisfied only when s is 1, i.e. all zi[y] are greater than 10.

More generally, we have the following proposition:

Proposition 2. Given a HAVING query Q, let q = sk(Q) and S , ρ and τ be chosen as in
Fig. 3, then for any deterministic instance W and sτ,W,q (Sec. 3.2):

W |= Q ⇐⇒ ρ(sτ,W,q)

In probabilistic databases, we want to compute the random variable sτ,q defined

as sτ,q(W) def
= sτ,W,q. A simple corollary of Prop. 2 is the following generalization to

probabilistic databases:

Corollary 1. Given Q, let q, S ,ρ and τ be as in Prop. 2 then for any BID instance J we
have the following equalities:

µJ(Q) = µJ(ρ(sτ,W,q)) =
∑

k : ρ(k)

msτ,q [k]

9

Cor. 1 tells us that examining the entries of the marginal vector at index s such that
ρ(s) is true is sufficient to answer Q. Hence our goal is to compute msτ,q .

4.2 Computing safely in semirings

We now extend safe plans to compute a marginal vector instead of a Boolean value.
Specifically, we compute msτ,q , the marginal vector for sτ,q using the operations defined
in Sec. 3.1.

Definition 11. An extensional plan for a Boolean conjunctive query q is a subgoal g
and if P1, P2 are extensional plans then so are πI

−xP1, πD
−xP1 and P1 Z P2. An exten-

sional plan P is safe if P1 and P2 are safe then

– P = g is safe
– P = πI

−xP1 is safe if x ∈ var(P1) and ∀g ∈ goal(P1) then x ∈ key(g)
– P = πD

−xP1 is safe if x ∈ var(P1) and ∃g ∈ goal(P1), key(g) ⊆ var(P), x ∈ var(g).
– P = P1 Z P2 is safe if goal(P1) ∩ goal(P2) = ∅

– and for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi)

An extensional plan P is a safe plan for q if P is safe and goal(P) = q.

Proposition 3. If P is a safe plan for q, then for x ∈ var(q) there is exactly one of πI
−x

or πD
−x in P.

At least one of the two projections must be present, because we must remove the
variable x (q is boolean). If there were more than one in the plan, then they cannot be de-
scendants of each other because x < var(P1) for the ancestor and they cannot be joined
afterward because of the join condition for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆
var(Pi)

Definition 12. Given a BID instance J. Let P be an safe plan, then denote the exten-
sional value of P in S on J as ω̂J

P,S which is a marginal vector on S defined inductively:

– ω̂J
g,S (t) = τ̂g(t) where τ̂g(t) is the marginal vector mt given by mt[0] = 1 − t[P] and

mt[τg(t)] = t[P], i.e. the (probabilistic) image of τ.
– ω̂J

πI
−xP1,S

(t) =
+S
t′∈suppP1 ,var(P)(t)

ω̂J
P1,S

(t).

– ω̂J
πD
−xP1,S

(t) =⊥t′∈suppP1 ,var(P)(t) ω̂
J
P1,S

(t).

– ω̂J
P1ZP2

(t) = ω̂J
P1,S

(t1)
· ω̂J
P2,S

(t2) where for i = 1, 2 ti is t restricted to var(Pi)

The next lemma uses the observation that an operator in a safe plan and the operator
used to compute the value have the same correlation assumptions. For example, πI

assumes independence, which is required for
+.

Lemma 1. If P is a safe plan for a Boolean query q then for any si ∈ S on any BID
instance J, we have ω̂J

P()[si] = µJ(sτ,q = si).

Remark 2. A safe plan is not necessarily efficient for any S (Def. 4). In particular, the
operations in a safe plan on S take time polynomial in |S |. Thus, if the size of S grows
super-polynomially in |J|, the size of the BID instance, the plan will not be efficient.

10

4.3 MIN, MAX and COUNT-safe

We can now formalize the class of queries which are efficient for MIN, MAX and COUNT.

Definition 13. If α ∈ {MIN, MAX, COUNT} and Q[α(t) θ k] is a HAVING query, then Q is
α-safe if the skeleton of Q is safe.

Theorem 1. If Q[α(y) θ k] is a HAVING query for α ∈ {MIN, MAX, COUNT} and Q is
α-safe then the exact evaluation problem for Q is in polynomial time.

Correctness is straightforward from Lem. 1. Efficiency follows because the semiring
is of polynomial size. Hence the translation and each operation in the evaluation is of
polynomial size for each aggregate in the theorem. In particular, S is constant for MIN
and MAX and upper bounded by n for COUNT.

Remark 3. We remark that for SUM, we can only guarantee that |S | = O(k), which
implies a running time of O(kn|Q|), which is not efficient (Def. 4).

The results of [?,?,?] show that either a conjunctive query without self-joins has a
safe plan or it is]P-hard. It is not hard to see that each aggregate has at least one test
so that a HAVING query Q is satisfied only when the skeleton of Q is satisfied. It is then
straightforward to extend to all predicate tests. Formally, we have:

Theorem 2. If α ∈ {MIN, MAX, COUNT} and Q[α(y) θ k] does not contain self-joins, if Q
is α-safe then Q has data complexity in P else Q has]P-hard data complexity. Further,
we can find an α-safe plan in P.

The algorithm to find a safe plan is identical to [?,?].

4.4 COUNT(DISTINCT)-safe queries

Intuitively, we compute COUNT(DISTINCT) in two stages: proceeding bottom-up, we
first compute the probability a y value appears (i.e. DISTINCT), we then count the num-
ber of distinct values (i.e. COUNT) using the techniques of the previous section. However,
one caveat is that the representation is lossy: We do not know which values are present,
only the distribution of their count. This implies that not all operations on these lossy
marginal vectors are correct, which restricts the class of allowable plans:

Definition 14. A query Q[COUNT(DISTINCT y) θ k] is COUNT(DISTINCT)-safe if there
is a safe plan P for the skeleton of Q such that πI

−y or πD
−y is in P and no proper ancestor

is πI
−x for any x.

Example 7. Fix a BID instance J. Consider Q[COUNT(DISTINCT y) > 2] D R(y, x), S (y),
a safe plan for the skeleton of Q is P = πI

−y((πI
−xR(y, x)) Z S (y)). For the subquery

P1 = (πI
−xR(y, x)) Z S (y), calculate the probability that each value EXISTS in the

subplan P1, i.e. for each t, ω̂J
P,EXISTS(t). Intuitively, all tuples returned by the plan are

independent because πI
−y is correct, and all y values are trivially distinct.

Intuitively, we map each EXISTSmarginal vector to a vector suitable for computing
COUNT, i.e. a vector in Zk where k = 2, in this problem. In other words, (1 − p, p) =

11

ω̂J
P,EXISTS(t) = mt is mapped to τ̂(mt) = (1 − p, p, 0). Thus, the correct distribution

is given by
t′∈suppP(()) τ̂(t′). To compute the final result, use the recovery function, ρ
defined by ρ(s) ⇐⇒ s > 2

The proof of the following theorem is a generalization of Ex. 7, whose proof we
include in the appendix:

Theorem 3. If Q is COUNT(DISTINCT)-safe then its evaluation problem is in P.

Complexity We now establish that for COUNT(DISTINCT) queries without self-joins,
COUNT(DISTINCT)-safe captures efficient computation. We first show the canonical
hard patterns for COUNT(DISTINCT) and then extend this to show that the evaluation
of any COUNT(DISTINCT) query without self-joins that is not COUNT(DISTINCT)-safe
can be reduced to one of these hard patterns.

Proposition 4. The following HAVING queries are]P-hard for i ≥ 1:

Q1[COUNT(DISTINCT y) θ k] D Rp(x), S(x, y) and Q2,i[COUNT(DISTINCT y) θ k] D Rp
1 (x; y), . . . , Rp

i (x; y)

Proof (Sketch). To see that Q1 is hard, we reduce from counting the number of inde-
pendent sets in a graph (V, E). We let k be the number of edges, intuitively Q is satisfied
only when all edges are present. For each node u ∈ V , create a tuple R(u) with probabil-
ity 0.5. For edge e = (u, v) create two tuples S(e, u), S(e, v), each with probability 1. For
any set V ′ ⊆ V , let WV ′ denote the world corresponding where the tuples correspond-
ing to V ′ are present. For any subset of nodes, N, we show that if N is an independent
set if and only if WV−N satisfies Q1. Since f (N) = V − N is one-to-one, the number
of possible worlds that satisfy Q1 are exactly the number of independent sets. If N is
independent, then for any edge (u, v), it must be the case that at least one of u or v is in
V − N, thus every edge is present and Q is satisfied. If N is not independent, then there
must be some edge (u, v) such that u, v ∈ N, hence neither of u, v is in V − N. Since
this edge is missing, Q1 cannot be satisfied. The hardness of Q2 is based on a reduction
from counting the set covers of a fixed size and is in the appendix.

There is some work in generalizing the previous theorem, we show in the appendix:

Theorem 4. If Q is not COUNT(DISTINCT)-safe and does not contain self-joins, then Q
has]P-hard data complexity.

Proof (Sketch). We sketch the proof in the simpler case when only tuple independent
probabilistic tables are used in Q. Assume the theorem fails, let Q be the minimal
counter example in terms of subgoals; this implies we may assume that Q is connected
and the skeleton of Q is safe. Since there is no safe plan projecting on y and only inde-
pendent projects are possible, the only condition that can fail is that some subgoal does
not contain y. Thus, there are at least two subgoals R(x) and S (zy) such that y < x ∪ z
and x∩ z , ∅. Given a graph (V, E), we then construct a BID instance J exactly as in the
proof of Prop. 4. Only the R relation is required to have probabilistic tuples, all others
can set their probabilities to 1.

12

Extending to tuple-disjoint databases requires slightly more work, because adding
multiple tuples with probability 1 may violate a possible world key constraint. The full
proof appears in the appendix. It is straightforward to decide if a plan is COUNT(DISTINCT)-
safe, the safe plan algorithm of [?,?] simply tries only disjoint projects and joins until it
is able to project away y or it fails.

4.5 SUM-safe and AVG-safe queries

To find SUM- and AVG-safe queries, we further restrict the class of allowable plans. Intu-
itively, if each value for y is present disjointly, then computing the multiplicity of each
value is sufficient to compute the query, which we accomplish using the COUNT algebra
of Sec. 4.3. Since computing SUM and AVG for a HAVING query with a single tuple in-
dependent table is already]P-Hard, our safe plans we must not contain an independent
project for y (πI

−y).

Definition 15. A HAVING query Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, if there is a
safe plan P for the skeleton of Q such that πD

−y in P and no proper ancestor of πD
−y is πI

−x
for any x.

Theorem 5. If Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, then Q’s evaluation problem is
in P.

Proof (Sketch). Since Q is α-safe, there is a plan P satisfying Def. 15. We may assume
without loss of generality that P = πD

−y(P1). We compute P1 using the algebra for COUNT,
ω̂J
COUNT,P1

(t), which is correct because P1 is safe. We then have the following equation
which can be computed efficiently:

µ(Q) =
∑

t∈suppP1
()

∑
s:s∗t[y] θ k

ω̂J
P1,COUNT

[s]

Example 8. Consider Q[SUM(y) > 10] D R(‘a’; y), S(y, u). This query is SUM-safe, with
plan πD

−y(R(‘a’; y) Z πI
−uS(y, u)).

Complexity We show that if a HAVING query without self-joins is not SUM-safe then, it
has]P-data complexity. AVG follows by essentially the same construction.

Proposition 5. If α ∈ {SUM, AVG} and θ ∈ {≤, <,=, >,≥} then Q[α(y) θ k] D Rp(y) has
]P-data complexity.

Proof (Sketch). Consider when θ is =. An instance of]SUBSET-SUM is a set of in-
tegers x1, . . . , xn and our goal is to count the number of subsets ∅ , S ⊆ 1, . . . , n
such that

∑
s∈S xi = B. We create the representation with schema R(X; ; P) satisfying

R = {(x1; 0.5), . . . , (xn; 0.5)}, i.e. each tuple present with probability 0.5. Thus, µ(Q)∗2n

is number of such S . Showing hardness for other aggregate tess is straightforward.

Theorem 6. If α ∈ {SUM, AVG} and θ ∈ {=,,,≤, <, >,≥} then let Q[α(y) θ k] be a
HAVING query if Q does not contain self-joins and is not α-safe, then Q has]P-data
complexity. Further, there is an algorithm to decide if Q is α-safe in P.

13

If Q’s skeleton is unsafe, then it is straightforward that Q has]P-hard data com-
plexity. So we may assume that Q is safe, but not SUM-safe. Given any set of constants
y1, . . . , yn, let q = sk(Q) and for i = 1, . . . , n, qi be q[y → yi]. We construct an instance
J such that the qi are satisfied independently with multiplicity 13. This allows us to
construct the reduction above. A formal proof is in the appendix.

5 Related Work

Probabilistic relational databases have been discussed by Barbara et. al [?] and more
recently Dalvi and Suciu [?], Ré et. al [?], Sen et. al [?] and Widom [?], though all
omit HAVING style aggregation. Cheng et al. [?] and Desphande et. al [?] consider prob-
abilistic databases resulting from sensor networks and handle continuous distributions
with more general correlations, while we handle only the discrete case. In their settings,
aggregate queries are effectively value aggregates over a singe relation.

In the OLAP setting [?] and streaming setting [?] give efficient algorithms for value
aggregation in a model which is equivalent to the single table model and focuses on
scaling such computation (e.g. using streaming techniques). In contrast, computing the
AVG for predicate aggregates on a single table is already]P-Hard. Ross et al. [?] de-
scribe an approach to computing aggregates on a probabilistic database, by computing
bounding intervals (e.g. the AVG is between [5600, 5700]). For more aggregate functions
than we discuss, they show computing bounding intervals exactly is NP-Hard but do
not offer any results on the boundary of hardness.

A closely related work is Arenas et. al, [?] which considers the complexity of ag-
gregate queries, similar to HAVING queries, over data which violates functional depen-
dencies. Their semantic is greatest lower bound or least upper bound on the set of all
minimal repairs, i.e. not probabilistic. They consider multiple predicates, which we do
not. In this paper, we deal with more general types of value inconsistency.

6 Conclusion

In this paper we have examined the complexity of evaluating positive conjunctive queries
with predicate aggregates over probabilistic databases. For each aggregate, we dis-
cussed a novel method based on computing the distribution of elements in a semiring
to evaluate such queries. We proved that for conjunctive queries without self-joins our
methods are optimal.

Acknowledgements This work was partially supported by NSF Grants IIS-0428168
and IIS-0454425.

3 By multiplicity, we mean that for any W ∈ WJ and any qi there is at most one valuation v such
that im(v) ⊆ W

14

7 Appendix: Full Proof for COUNT(DISTINCT)

Theorem 7 (Restatement of Thm. 3). If Q is COUNT(DISTINCT)-safe then its evalua-
tion problem is in P.

Proof. Since Q is COUNT(DISTINCT)-safe, then there is a safe plan P for the skeleton
of Q. In the following let P1 P2 denote the relationship P1 is a descendant in P of
P2 (alternatively, containment). Let Py be a subplan which satisfies Py = π

I
y(P′) P or

Py = π
D
y (P′) P. Py is a safe plan, hence S -safe for S = Z2, i.e. the EXISTS algebra.

For each t such that suppPy
(t) , ∅, we can write ω̂I

Py
(t) = (1− p, p), i.e. t is present with

probability p. From this, create a marginal vector in Zk+1, as in COUNT, mt such that
mt[0] = 1− p and mt[1] = p and all other entries 0. Notice that if t , t′ then t[y] , t[y′].
Informally, this means all y values are distinct “after” Py.

Compute the remainder of P as follows: If P0 is not a proper ancestor or descendant
of Py, then compute P0 as if you were using the EXISTS algebra. To emphasize that P0
should be computed this way, we shall denote the value of t under P0 as ω̂J

P0,EXISTS
(t).

Since P is COUNT(DISTINCT)-safe, any proper ancestor P0 of Py is of the form P0 =

πD
−xP1 or P0 = P1 Z P2. If P0 = π

D
−xP1 then ω̂J

P0
(t) =⊥t′∈suppP1

ω̂J
P1

(t); this is correct
because the tuples we are combining are disjoint, so which values are present does not
matter. Else, we may assume P0 = P1 Z P2 and without loss we assume that Py P1,
thus we compute:

ω̂J
P1,COUNT(DISTINCT)(t) = ω̂

J
P1

(t1)
· ω̂J
P2,EXISTS

(t2)

This is an abuse of notation since we intend that ω̂J
P2
∈ Z2 is first mapped into Zk+1 and

then the convolution is performed. Since we are either multiplying our lossy vector by
the annihalator or the multiplicative identity, this convolution has the effect of multiply-
ing by the probability that t is in P2, since these events are independent this is exactly
the value of their conjunction.

7.1 Complexity

Proposition 6 (Second Half of Prop. 4). The following HAVING queries are]P-hard
for i ≥ 1:

Q2,i[COUNT(DISTINCT y) θ k] D Rp
1 (x; y), . . . , Rp

i (x; y)

Proof. We start with i = 1. The hardness of Q2 is shown by a reduction counting the
number of set covers of size k. The input is a set of elements U = {u1, . . . , un} and a
family of sets F = {S 1, . . . , S m}. A cover is a subset of F such that for each u ∈ U there
is S ∈ S such that u ∈ S . For each element u ∈ U, let S u = {S ∈ F | u ∈ S }, add a
tuple R(u; S ; |S u|

−1) where S ∈ S u. Every possible world corresponds to a set cover and
hence, if Wk is the number of covers of size k then µ(Q) = Wk(

∏
u∈U |S u|

−1). Notice that
if use the same reduction i > 1, we have that µ(Q) = Wk(

∏
u∈U |S u|

−i).

We show that if Q contains self-joins and is not COUNT(DISTINCT)-safe, then Q has
]P data complexity. First, we oberve a simple fact:

15

Proposition 7. If Q is a HAVING query with an unsafe skeleton then Q has]P-hard
data complexity. Further, if Q is connected and safe but not COUNT(DISTINCT)-safe
then there must exist x , y such that ∀g ∈ goal(Q), x ∈ key(g).

Proof. We simply observe that the count of distinct variables is ≥ 1 exactly when the
query is satisfied, which is]P-hard. The other aggregates follow easily. Since the skele-
ton of Q is safe, there is a safe plan for Q that is not COUNT(DISTINCT)-safe. This
implies there is some projection independent πI

−y on all variables.

Definition 16. For a conjunctive query q let Fq
∞ be the least fixed point of Fq

0 , F
q
1 , . . . ,

where
Fq

0 = {x | ∃g ∈ goal(Q) s.t. key(g) = ∅ ∧ x ∈ var(g)}

and
Fq

i+1 = {x | ∃g ∈ goal(Q) s.t. key(g) ⊆ Fi ∧ x ∈ var(g)}

Intuitevely, Fq
∞ is the set of variables “fixed” in a possible world.

Proposition 8. If q is safe and x ∈ Fq
∞ then there is a safe plan P such that π−x ∈ P

and for all ancestors of π−x they are either π−zP1 for some z or P1 Z P2.

Proof. Consider the smallest query q such that the propositon fails where the order is
given by number of subgoals then number of variables variables. Let x1, . . . , xn accord-
ing to the partial order xi x j if exists Fq

k such that xi ∈ Fq
k but x j < Fq

k . If q = q1q2
such that x ∈ var(q1) and var(q1)∩ var(q2) = ∅ then P1 satisfies the claim and P1 Z P2
is a safe plan. Otherwise let P1 be a safe plan for q[x1 → a] for some fresh constant a.
Since this has fewer variables P1 satisfies the claim and π−xP1 is safe immediately from
the definition.

We now define a set of rewrite rules⇒ which transform the skeleton and preserve
hardness. We use these rewrite rules to show the following lemma:

Lemma 2. Let q = sk(Q), if q is safe but Q is not COUNT(DISTINCT)-safe and there is
some g such that y < key(g) and y < f q

∞ then Q has]P-hard data complexity.

For notational convenience, we shall simple work with the skeleton of a HAVING
query Q[α(y) θ k] and assume that y is a distinguished variable.

1) q⇒ q[z→ c] if z ∈ Fq
∞

2) q⇒ q1 if q = q1q2 and var(q1) ∩ var(q2) = ∅ and y ∈ var(q1)
3) q⇒ q[z→ x] if x, z ∈ key(g) and z , y
4) q, g⇒ q, g′ if key(g) = key(g′), var(g) = var(g′) and arity(g) < arity(g)′

5) q, g⇒ q if key(g) = var(g)
We let q ⇒∗ q′ denote that q′ is the result of any finite sequence of rewrite rules

applied to q.

Proposition 9. If q⇒∗ q′ and q′ has]P-hard data complexity, then so does q.

16

Proof. For rule 1, we can simply restrict to instances where z → c. For rule 2, if q1 is
hard then q is hard because we can fill out each relation in q2 with a single tuple and use
q to answer q1. Similiarily, for rule 3 we can consider instances where z = x so q will
answer q1. For rule 4, we apply the obvious mapping on instances (to the new subgoal).
For rule 5, we fill out g with tuples of probability 1 and use this to answer q.

Proof (Prop. 2). By Prop. 7, there is some x such that x ∈ key(g) for any g ∈ goal(Q).
Let q = sk(Q), we apply rule 1 and 2 to a fixed point, which removes any products. We
then apply the rule 3 as ∀z , y, q[z → x]. Thus, all subgoals have two variables, x and
y. We then apply rule 4 to a fixed point and finally rule 5 to a fixed point. It is easy to see
that all remaining subgoals are of the form Rp(x; y) which is the hard pattern. Further,
it is easy to see that g⇒∗ Rp(x; y).

We can now prove the main result:

Lemma 3. If Q is a HAVING query without self-joins and Q is not COUNT(DISTINCT)-
safe then the evaluation problem for Q is]P-hard.

Proof. If q is unsafe, then Q has]P-hard data complexity. Thus, we may assume that
q is safe but Q is not COUNT(DISTINCT)-safe. If Q contains g ∈ goal(Q) such that
y ∈ var(g) but y < key(g) then Q has]P-hard data complexity by Lem. 2. Thus, we
may assume that y appears only in key positions.

First apply rewrite rule 2, to remove any products and so we may assume Q is
connected. If Q is a connected and y ∈ key(g) for every g then Q is COUNT(DISTINCT)-
safe. Thus, there are at least two subgoals and one contains a variable x distinct from
y call them g and g′ respectively. Apply the rewrite rule 3 as q[z → x] for each z ∈
var(q)− {x, y}. Using rules 4 and 5, we can then drop all subgoals but g, g′ to obtain the
pattern R(x), S (x, y), which is hard.

17

8 Appendix: Full Proofs for SUM and AVG

8.1 AVG hardness

Definition 17. Given a set of nonnegative integers a1, . . . , an, the]NONNEGATIVE SUBSET-AVG
problem is to count the number of non-empty subsets S ⊆ 1, . . . , n such that

∑
s∈S as|S |−1 =

B for some fixed integer B.

Proposition 10.]NONNEGATIVE SUBSET-AVG is]P-hard.

Proof. We first observe that if we allow aribitrary integers, then we can reduce any
]NONNEGATIVE SUBSET-SUM with B = 0, which is]P-hard. Since the summation
of any set is 0 if and only if their average is 0. Thus, we reduce from this unrestricted
version of the problem. Let B = mini ai then we simply make a′i = ai+B, now all values
are positive, we then ask if the average is B. For any set S we have :∑

s∈S

a′s|S |
−1 =

∑
s∈S

(as + B)|S |−1 =
∑
s∈S

(as + B)|S |−1 =
∑
s∈S

|S |−1as + B

Thus, it is clear that the average is satisfied only when
∑

s∈S as = 0.

8.2 Proof of Thm. 6

It is sufficient to show the following lemma:

Lemma 4. Let q = sk(Q), if If q is safe, but Q is not SUM-safe then there is an instance
I then for any set of values y1, . . . , yn let qi = q[y → yi] and S ⊆ 1, . . . , n we have
µ(
∧n

s∈S qs) =
∏

s∈S µ(qs) = 2−|S |. Further, on any world W and qi there is a single
valuation v for qi such that im(qi) ⊆ W.

This lemma that we can always construct the same distribution used in Prop. 5.

Proof. We observe that y < Fq
∞ else there would be a SUM- and AVG-safe plan by Prop. 8.

Now consider the rewriting q[x → ’a’] for any x ∈ F∞ and q[x → y] if x < F∞.
Thus, in any subgoal y = var(g). Pick one and add each y1 value with probability 1

2
independently. Notice that every relation either contains yi in each tuple or the constant
a. It is not hard to see that in any world that all valuations are distinct.

18

