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Abstract—We present a technique to mine explicit information
flow specifications from concrete executions. These specifications
can be consumed by a static taint analysis, enabling static analysis
to work even when method definitions are missing or portions
of the program are too difficult to analyze statically (e.g., due
to dynamic features such as reflection). We present an imple-
mentation of our technique for Java and the Android platform.
When compared to a set of manually written specifications for
309 methods across 51 classes, our technique is able to recover
96.36% of these manual specifications and produces many more
correct annotations that our manual models missed (97.12% vs
79.12% precision). We incorporate the specifications generated
by our technique into an existing static taint analysis system,
and show that they enable it to find additional true flows.
Although our implementation is Android-specific, our approach
is applicable to other application frameworks.

I. INTRODUCTION

Scaling a precise and sound static analysis to real-world
software is challenging, especially for software written in
modern object-oriented languages such as Java. Typically
such software builds upon large and complex frameworks
(e.g., Android, Apache Struts, and Spring). For soundness and
precision, any analysis of such software entails analysis of
the framework. However, there are at least four problems that
make the analysis of framework code challenging. First, a very
precise analysis of a framework may not scale because most
frameworks are very large. Second, framework code may use
dynamic language features, such as reflection in Java, which
are difficult to analyze statically. Third, frameworks typically
use non-code artifacts (e.g., configuration files) that have
special semantics that must be modeled for accurate results.
Fourth, frameworks themselves usually build on abstractions
written in lower-level languages for which a comprehensive
static analysis may not be available (e.g., Java’s native meth-
ods). Such foreign functions appear simply as missing code to
the static analysis of the higher-level language.

One approach to address these problems is to use specifica-
tions (also called models) for framework classes and methods.
From a high-level, a specification reflects those effects of the
framework code on the program state that are relevant to
the analysis. The analysis can then use these specifications
instead of analyzing the framework. Use of specifications can
improve the scalability of an analysis dramatically because
specifications are usually much smaller than the code they
specify. In addition to scalability, use of specifications can also
improve the precision of the analysis because specifications are
also simpler (e.g., no dynamic language features or non-code

artifacts) than the corresponding code.
Although use of specifications can improve both scalability

and precision of an analysis, obtaining specifications is a
challenging problem in itself. If specifications are computed
by static analysis of the framework code, the aforementioned
problems arise. An alternative approach is to manually write
specifications. This approach is not impractical because once
the specifications for a framework are written, those specifi-
cations can be used to analyze any piece of software that uses
that framework. However, writing and maintaining specifica-
tions manually for a large framework is still laborious and
susceptible to human error. Dynamic analysis, which observes
concrete executions of a program and generalizes to produce
specifications, represents an attractive third alternative. Mining
specifications from execution traces is not a novel idea. For
example, some techniques produce control-flow specifications
(e.g., [2, 46, 32, 19, 34]), while others discover general pre-
and post-conditions on methods (e.g., Daikon [14]). However,
we are interested in inferring information flow specifications
from program executions, a problem that, to the best of our
knowledge, has not been previously explored.

We mine explicit information flow specifications by execut-
ing each method for which we wish to construct a model and
recording a trace of all operations performed by the method.
Using this trace, we reconstruct the view the method has
of the structures in the heap reachable from the method’s
arguments. We apply a specialized from of dynamic taint
tracking to capture the information flows between locations
inside those structures. We then lift these dynamic information
flows to a static signature summarizing the flows between a
method’s arguments or between an argument and the return
value. Finally, we combine the flows mined from different
executions of a method to produce its overall specification.

We evaluate our generated specifications in three ways.
First, we compare them to a set of specifications which were
manually written over a period of two years. Our technique
independently discovers 96.36% of the manual models and
finds many additional correct specifications missed by human
model writers. Second, we give our specifications as models
for a static taint analysis. The specifications allow the analysis
to discover over 31% additional flows, many of which we
found to be true positives, while preserving a 98.12% recall
compared to the same tool using only manual models. Third,
we show that we are able to mine useful specifications from
only a few executions of a method (1.38 in average) that are
as good as those mined from large sets of traces.



/ / Se t−up o b j e c t s
Socke tChanne l s o c k e t = . . . ;
C h a r B u f f e r b u f f e r = . . . ;
C h a r s e t E n c o d e r e n c o d e r =

C h a r s e t . forName ( ”UTF−8” ) . newEncoder ( ) ;
TelephonyManager tMgr = . . . ;

/ / Leak phone number :
S t r i n g mPhoneNumber = tMgr . getLine1Number ( ) ;
C h a r B u f f e r b1 = b u f f e r . p u t ( mPhoneNumber , 0 , 1 0 ) ;
B y t e B u f f e r b y t e b u f f e r = e n c o d e r . encode ( b1 ) ;
s o c k e t . w r i t e ( b y t e b u f f e r ) ;

Fig. 1. Leak phone number to Internet

TelephonyManager.getLine1Number() $PHONE NUM → return
CharBuffer.put(String,int,int) arg#1 → this

this → return
arg#1 → return

CharsetEncoder.encode(CharBuffer) arg#1 → return
SocketChannel.write(ByteBuffer) arg#1 → !INTERNET

TABLE I
SPECIFICATIONS FOR PLATFORM METHODS

We begin by giving a motivating example for the value of
our technique (Section II) and describe the overall architecture
of our implementation (Section III). We then present our
specification mining technique in detail (Section IV). Next,
we describe our empirical evaluation and present our results
(Section V). Finally, we summarize related work (Section VI)
and conclude (Section VII).

II. MOTIVATION

As part of a long term research project to improve mal-
ware detection techniques for mobile platforms, our group
has developed STAMP. STAMP is a hybrid static/dynamic
program analysis tool for Android applications: The core
analysis performed by STAMP is a static taint analysis that
aims to detect privacy leaks. Given the code fragment in
Figure 1, STAMP should infer that the device’s phone number
(retrieved by getLine1Number()) is sent to the Internet
(using socket) and flag it as a potential leak.

STAMP performs whole-program analysis of the An-
droid application code and any libraries bundled into its
installer (.apk file). However, because of the challenges
discussed in Section I, STAMP does not directly analyze
the Android platform’s libraries. In Figure 1, STAMP’s
static analysis component has no way of inspecting the be-
havior of tMgr.getLine1Number(), buffer.put(),
encoder.encode() or socket.write().

The simplest solution to this problem is to manually write
a specification of the information flow properties of each
platform method. These specifications can then be loaded by
the static analysis and assumed to be an accurate representation
of the corresponding methods. This is the approach we adopted
for early versions of STAMP. Table I shows the specifications
for the methods in Figure 1. The notation is as follows:
a→ b indicates that there is a possible flow from a to b.

Whatever information was accessible from a before

Fig. 2. Architecture of Droidrecord/Modelgen

the call is now potentially accessible from b after the
call. If a is a reference, the information accessible
from a includes all objects transitively reachable
through other object references in fields.

this is the instance object for the modeled method.
return is the return value of the method.
arg#i is the i-th positional argument of the method. For

a static method, argument indices begin at 0. For
instance methods, arg#0 is an alias for this and
positional arguments begin with arg#1.

$SOURCE is a source of information flow and represents
a resource, external to the program, from which the
API method reads some sensitive information (e.g.
$CONTACTS, $LOCATION, $FILE).

!SINK is an information sink and represents a location
outside of the program to which the information
flows (e.g. !INTERNET, !FILE).

Given the specifications in Table I, STAMP can track the
flow of sensitive information from $PHONE_NUM—through
parameters and return values—to !INTERNET, via static
analysis of the code in Figure 1.

Over a period of two years, we produced a large set of
manually-written models. Generating these models was a non-
trivial task, as it required running STAMP on various Android
applications, discovering that it failed to find some flows,
figuring out the platform methods involved in breaking the
static flow path and reading the Android documentation before
finally writing a model for each missing method.

In the rest of this paper we describe a technique for
automatically mining explicit information flow specifications
between the parameters (this, arg#i) and return values of
arbitrary platform methods.

III. ARCHITECTURAL OVERVIEW

An architecture diagram of our system is given in Figure 2.
The first part of our system, Droidrecord, takes binary libraries
(.jar) and application archives (.apk) in their compiled form
as Android’s DEX bytecode. Droidrecord inserts a special
logger class into every executable. Using the Soot Java Opti-
mization Framework [45] with its Dexpler [6] DEX frontend,



Droidrecord then modifies each method to use this logger to
record the results of every bytecode operation performed. We
call each such operation an event and the sequence of all events
in the execution of a program is a trace.

Once instrumented, the modified Android libraries are put
together into a full Android system image that can be loaded
into any standard Android emulator. For specification mining,
we capture the traces generated by running the test suite for the
platform methods we wish to model. In particular, we make
use of the Android Compatibility Test Suite (CTS) [21].

Running the instrumented tests over the instrumented sys-
tem image produces a collection of traces. Modelgen is the
component of our system that analyzes these traces off-line
and generates explicit information flow specifications.

Droidrecord Instrumentation. Since events are recorded
to the file system during the instrumented code’s execution, it
is important that their representation be compact. A compact
representation reduces both the disk space taken inside the
emulator and the slowdown resulting from performing many
additional disk writes as the instrumented code executes.

Droidrecord generates a template file (.template) containing
all the information for each event that can be determined stati-
cally. The instrumented code stores only a number identifying
the event in the template file and those values of the event
that are only known at runtime. As an example, consider a
single method call operation, shown below in Soot’s internal
bytecode format (slightly edited for brevity):

$r5 = v invoke $r4 .< S t r i n g B u i l d e r . append ( i n t )>( i 0 ) ;

When encountering this instruction, Droidrecord outputs the
following event template into its .template file:

1 7 5 3 3 : [ MethodCal lRecord{Thread : ,
Name : <j a v a . l a n g . S t r i n g B u i l d e r . append ( i n t )> ,
At : [ . . . ] ,
P a r a m e t e r s : [ o b j : S t r i n g B u i l d e r : , i n t : ] ,
P a r a m e t e r L o c a l s : [ $r4 , i 0 ] ,
He ig h t : i n t : }]

The bytecode is then instrumented to record the runtime
values of the method’s parameters:

s t a t i c i n v o k e <T r a c e R e c o r d e r . r e c o r d E v e n t ( long )>(17533L ) ;
s t a t i c i n v o k e <T r a c e R e c o r d e r . w r i t e T h r e a d I d ( ) > ( ) ;
s t a t i c i n v o k e <T r a c e R e c o r d e r . w r i t e O b j e c t I d ( O b j e c t )>( r4 ) ;
s t a t i c i n v o k e <T r a c e R e c o r d e r . w r i t e ( i n t )>( i 0 ) ;
$ r5 = v invoke $r4 .< S t r i n g B u i l d e r . append ( i n t )>( i 0 ) ;

When reading the trace, these values are plugged into the
placeholder positions (‘ ’ above) of the event template. For
some events (simple assignments, arithmetic operations, etc)
all the values can be inferred statically as a simple function
of the values of previous events. These events generate event
templates but incur no dynamic recording overhead.

Modelgen Trace Extraction. After tests are run and traces
extracted from the emulator, they are first pre-processed and
combined with the static information in the .template file.
The result is a sequential stream of events for each method
invocation; we write (m : i) for the ith invocation of method
m. Calls made by (m : i) to other methods are included in
this stream, together with all the events and corresponding

T ::= e∗ (trace)
e ∈ event ::= x = pv (literal load)

| x = newObj (new object)
| x = y (variable copy)
| x = y � z (binary op)
| x = y.f (load)
| x.f = y (store)
| x = m(y) (call)
| return x (return)
| throw x (throw exception)
| catch x = a (caught exception)

pv ∈ Primitive V alue � ∈ BinOp
a ∈ Address r ∈ Rec = {f : v}
x, y, z ∈ V ar ρ ∈ Env : V ar ⇀ V alue
f ∈ Field h ∈ Heap : Address ⇀ Rec
m ∈Method

Fig. 3. Structure of a trace

calls within those other method invocations. Spawning a new
thread is an exception: events happening in a different thread
are absent from the stream for (m : i), but appear in the
streams for enclosing method invocations in the new thread.
This separation may break flows that involve operations of
multiple threads and is a limitation of our implementation.
We did not find any cases where a more precise tracking of
explicit information flow across threads would have made a
difference in our experimental results.

IV. SPECIFICATION MINING

To explain Modelgen’s core model generation algorithm, we
describe its behavior on a single invocation subtrace T(m:i),
which is the sequence of events in the trace corresponding
to method invocation (m : i). Recall T(m:i) includes the
invocation subtraces for all method invocations called from m
during invocation (m : i), including any recursive calls to m.
We now describe a simplified representation of T(m:i) (Section
IV-A) and give its natural semantics (Section IV-B), that is,
the meaning of each event in the subtrace with respect to the
original program execution. Modelgen analyzes an invocation
subtrace by processing each event in order and updating
its own bookkeeping structures. We represent this process
with a non-standard semantics: the modeling semantics of
the subtrace (Section IV-C). After Modelgen finishes scanning
T(m:i), interpreting it under the modeling semantics, it saves
the resulting specification which can then be combined with
the specifications for other invocations of m (Section IV-D).

A. Structure of a Trace

Figure 3 gives a grammar for the structure of traces, consist-
ing of a sequence of events. Events refer to constant primitive
values, field or method labels, and variables. The symbol �
stands for binary operations between primitive values. Objects
are represented as records mapping field names to values,
which might be either addresses or primitive values. This
grammar is similar to that of a 3-address bytecode representing
Java operations. However, it represents not static program
structure, but the sequence of operations occurring during a
concrete program run, leading to the following characteristics:



〈h, ρ, x = pv〉 ↓ 〈h, ρ[x→ pv]〉
(LIT)

a /∈ dom(h)

〈h, ρ, x = newObj〉 ↓ 〈h[a→ {}], ρ[x→ a]〉
(NEW)

ρ(y) = v

〈h, ρ, x = y〉 ↓ 〈h, ρ[x→ v]〉
(ASSIGN)

ρ(y) = pv1 ρ(z) = pv2 pv1 � pv2 = pv3

〈h, ρ, x = y � z〉 ↓ 〈h, ρ[x→ pv3]〉
(BINOP)

ρ(y) = a h(a) = r r(f) = v

〈h, ρ, x = y.f〉 ↓ 〈h, ρ[x→ v]〉
(LOAD)

ρ(x) = a h(a) = r ρ(y) = v r
′
= r[f → v]

〈h, ρ, x.f = y〉 ↓ 〈h[a→ r
′
], ρ〉

(STORE)

m = fun(z1, ..., zn){var x′; e; return y′}
∀i ρ(yi) = vi ρ

′
(y
′
) = v

′

〈h, [z1 → v1, ..., zn → vn, x′ → undef ], e〉↓〈h′, ρ′〉
〈h, ρ, x = m(y1, ..., yn)〉 ↓ 〈h′, ρ[x→ v

′
]〉

(INV)

〈hi, ρi, ei〉 ↓ 〈hi+1, ρi+1〉
〈h0, ρ0, e0; . . . ; en−1〉↓〈hn, ρn〉

(SEQ)

Fig. 4. Natural semantics

1) Conditional (if, switch) and loop (for, while)
operations are omitted and unnecessary; the events in
T represent a single path through the program. The
predicates inside conditionals are still evaluated, usually
as binary operations.

2) The values of array indices in recorded array accesses
are concrete, which allows us to treat array accesses
as we would object field loads and stores (e.g., a[i]
becomes a.i, and note i is a concrete value).

3) For each method call event x = m1(y) in T(m:i) there
is a unique invocation subtrace of the form T(m1:j) =
fun(z){var x; e; ef} where ef is a return or throw
event and x is a list of all variable names used locally
within the invocation. Again, since we cover only one
path through m for each invocation, invocation subtraces
may have at most one return event and must end with a
return or throw event.

We avoid modeling static fields explicitly by representing
them as fields of a singleton object associated with each class.

B. Natural Semantics of a Subtrace

Figure 4 gives a natural semantics for executing the program
path represented by an invocation subtrace. Understanding
these standard semantics makes it easier to understand the
custom semantics used by Modelgen to mine specifications,
which extend the natural semantics. The natural semantics of
a subtrace are similar but not quite identical to the semantics of
Java bytecode. The differences arise from the fact that subtrace
semantics represent a single execution path.

During subtrace evaluation, an environment ρ maps variable
names to values. A heap h maps memory addresses to object
records. Given a tuple 〈h, ρ, e〉 representing event e under
heap h and environment ρ, the operator ↓ represents the
evaluation of e in the given context and produces a new tuple

〈h′, ρ′〉 containing a new heap and a new environment. The
operator ↓ represents the evaluation of a sequence of events
which consists of evaluating each event (↓) under the heap
and environment resulting from the evaluation of the previous
event. The rules in Figure 4 describe the behavior of ↓ and
↓ for different events and their necessary pre-conditions. We
omit the rules for handling exceptions since they do not add
significant new ideas with respect to our specification mining
technique and exception propagation complicates both the
natural and modeling semantics.

We now consider how the natural semantics represent the
evaluation of the following example subtrace fragment which
increments a counter at x.f :

t ::= y = x.f ; z = 1;w = y + z;x.f = w

Assuming x contains the address a (i.e., ρ(x) = a) of heap
record r = {f : 0} (i.e., h(a) = r), LOAD gives us:

〈h, ρ, y = x.f〉 ↓ 〈h, ρ[y → 0]〉

Applying LIT, BINOP and STORE, respectively, we get:

〈h, ρ[y → 0], z = 1〉 ↓ 〈h, ρ[y → 0; z → 1]〉

〈h, ρ[y → 0; z → 1], w = y+z〉 ↓ 〈h, ρ[y → 0; z → 1;w → 1]〉

〈h, ρ[...;w → 1], x.f = w〉 ↓ 〈h[a→ {f : 1}], ρ[...;w → 1]〉

Using those evaluations for each expression, SEQ gives the
full evaluation of the fragment as

〈h, ρ, t〉↓〈h[a→ {f : 1}], ρ[y → 0; z → 1;w → 1]〉

where, in addition to some changes to the environment, field
f of record r in the heap has been incremented by one.

C. Modeling Semantics of a Subtrace

The modeling semantics augment the natural semantics by
associating colors with every heap location and primitive
value. For subtrace T(m:i), each argument to m is initially
assigned a single unique color. The execution of T(m:i) under
the modeling semantics preserves the following invariants:

Invariant I: Computed values have all the colors of the
argument values used to compute them.

Invariant II: At each point in the trace, if a heap location
l is accessed from an argument a using a chain of
dereferences that exists at method entry, then l has
the color of a.

Invariant III:At each point in the trace, every argument and
the return value have all the colors of heap locations
reachable from that argument or return value.

These invariants are easily motivated. Invariant I is the stan-
dard notion of taint flow: the result of an operation has the taint
of the operands. Invariant II captures the granularity of our
specifications on entry to a method: all the locations reachable
from an argument are part of the taint class associated with that
argument (recall the semantics of our specifications described
in Section II). Similarly, Invariant III captures reachability on
method exit. For example, if part of the structure of arg#1



l = new loc() c = new color()

〈h, ρ,L ,C,G,D, x = pv〉 ↓
〈h, ρ[x→ pv],L [x→ l],C[l→ {c}],G,D〉

(MLIT)

a /∈ dom(h) l = new loc() c = new color()

〈h, ρ,L ,C,G,D, x = newObj〉 ↓
〈h[a→ {}], ρ[x→ a],L [x→ l],C[l→ {c}],G,D〉

(MNEW)

ρ(y) = v L (y) = l

〈h, ρ,L ,C,G,D, x = y〉 ↓
〈h, ρ[x→ v],L [x→ l],C,G,D〉

(MASSIGN)

ρ(y) = pv1 ρ(z) = pv2 pv1 � pv2 = pv3
L (y) = l1 L (z) = l2 l3 = new loc()

C = C(l1) ∪ C(l2)
〈h, ρ,L ,C,G,D, x = y � z〉 ↓

〈h, ρ[x→ pv3],L [x→ l3],C[l3 → C],G,D〉

(MBINOP)

ρ(y) = a h(a) = r r(f) = v
L (a) = l1 L (y, f) = l2

C = D(a, f)?C(l2) : C(l1) ∪ C(l2)
〈h, ρ,L ,C,G,D, x = y.f〉 ↓

〈h, ρ[x→ v],L [x→ l2],C[l2 → C],G,D〉

(MLOAD)

ρ(x) = a h(a) = r ρ(y) = v r
′
= r[f → v]

L (y) = l1 L (a) = l2
G
′
= G+ {c1 → c2|∀c1 ∈ C(l1), c2 ∈ C(l2)}

〈h, ρ,L ,C,G,D, x.f = y〉 ↓
〈h[a→ r

′
], ρ,L ,C,G

′
,D[(a, f)→ True]〉

(MSTORE)

m = fun(z1, ..., zn){var x′; e; return y′}
ρm = [z1 → v1, ..., zn → vn, x′ → undef ]

Lm = L [z1 → L (y1), ..., zn → L (yn), x′ → new loc()]

〈h, ρm,Lm,C,G,D, e〉↓〈h′, ρ′,L ′,C′,G′,D′, t〉
L ′′ = L ′[z1 → L (z1), ..., zn → L (zn), x′ → L (x′)]

∀i ρ(yi) = vi ρ
′
(y
′
) = v

′ L (y
′
) = l

〈h, ρ,L ,C,G,D, x = m(y1, ..., yn)〉 ↓
〈h′, ρ[x→ v

′
],L ′′[x→ l],C

′
,G
′
,D
′〉

(MINV)

〈hi, ρi,Li,Ci,Gi,Di, ei〉 ↓
〈hi+1, ρi+1,Li+1,Ci+1,Gi+1,Di+1〉
〈h0, ρ0,L0,C0,G0,D0, e0; . . . ; en−1〉↓

〈hn, ρn,Ln,Cn,Gn,Dn〉

(MSEQ)

Fig. 5. Modeling semantics

is inserted into the structure reachable from arg#2 by the
execution of the trace, then arg#2 will have the color of
arg#1 on exit. At every step of the modeling semantics these
invariants are preserved for every computed value and heap
location seen so far; the invariants need not hold for heap
locations and values that have not yet been referenced by any
event in the examined portion of the subtrace. In addition,
reachability in Invariants II and III applies only to the paths
through the heap actually accessed during subtrace execution.

The natural semantics differentiate between primitive values
or addresses stored in variables of ρ and objects stored in
the heap h. Although this distinction is useful in representing
the subtrace’s execution, for specification mining we want to
associate colors with both heap and primitive values. For uni-
formity, we introduce a mapping L which assigns a “virtual
location” (VLoc) to every variable, object and field based on
origin (i.e., where the value was first created) rather than the
kind of value. Because virtual locations may be tainted with
more than one color (recall Invariant I), we introduce a map
C : VLoc ⇀ 2Color from virtual locations to sets of colors.
The modeling semantics also use G : {(Color,Color)}, which

is a relation on colors or, equivalently, a directed graph in
which nodes are colors, and D : (Address,Field) ⇀ Boolean,
which stands for “destructively updated” and maps object
fields to a boolean value indicating that the field of that
location has been written in the currently executed subtrace.
We explain the use of G and D below.

Figure 5 lists the modeling semantics corresponding to the
natural semantics in Figure 4. We now explain how the first 4
rules preserve Invariant I, as well as how MLOAD and MSTORE
preserve Invariants II and III, respectively.

Rule MLIT models the assignment of literals to variables.
A new literal value is essentially a new information source
within the subtrace and is assigned a new location with a
new color. The location is associated with the variable now
holding the value, preserving Invariant I. Rule MNEW, which
models new object creation, is similar. Rule MASSIGN models
an assignment x = y where x and y are both variables in ρ
and does not create a new location, but instead updates L (x)
to be the location of y, indicating that they are the same value,
again preserving Invariant I.

Rule MBINOP gives the modeling semantics for binary
operations. Assuming locations l1 and l2 for the operands, the
rule adds a new location l3 to represent the result. Because of
Invariant I, l3 must be assigned all the colors of l1 and all the
colors of l2, thus C(l3) becomes C(l1) ∪ C(l2).

Rules MLOAD and MSTORE deal with field locations. The
virtual location of field a.f (denoted L (a, f)) is defined as
either the location of the object stored at a.f , if the field is
of reference type, or as an identifier which depends on L (a)
and the name of f , if f is of primitive type.

Rule MLOAD models load events of the form x = y.f by
assigning the location l2 = L (y, f) to x and computing the
color set for this location (which will be the colors for both
x and y.f ). There are three cases to consider:
• If this is the first time the location L (y, f) has been

referenced within the subtrace T(m:i), then y.f has no
color (all heap locations except the arguments start with
the empty set of colors in C). Furthermore, since this is
the first access, y.f has not been previously written in the
subtrace, so D(ρ(y), f) = False. Therefore, l2 is assigned
the colors C(l1)∪C(l2) where l1 = L (y). Since C(l2) =
∅ before the load event, we end up with C(l2) = C(l1).
If y.f is reachable from a method argument through y,
this establishes Invariant II for y.f on its first access.

• If l2 has been loaded previously in the trace but not
previously overwritten, then C(l2) = C(l1) ∪ C(l2),
indicating that l2 now has the colors of all of its previous
accesses plus a possibly new set of colors C(l1). This
handles the case where a location is reachable from
multiple method arguments and preserves Invariant II.

• If y.f has been written previously then D(ρ(y), f) =
True. In this case it is no longer true that L (y, f) was
reachable from L (y) on method entry and so it is not
necessary to propagate the color of L (y) to L (y, f) to
preserve Invariant II and we omit it. Also, note that if
y.f has been written, that implies the value stored in y.f



Fig. 6. Processing a load event

Fig. 7. Loads reconstruct the heap structure reachable from each argument

was loaded before the write and so y.f will already have
at least one color.

Figure 6 shows the effect of a single load operation from
an argument to m, while Figure 7 depicts the coloring of a
set of the heap locations after multiple load events.

Rule MSTORE models store events of the form x.f = y.
The rule updates D(ρ(x), f) = True since it writes to x.f . We

Fig. 8. Processing a store event

Fig. 9. Stores induce connections between colored argument structures

could satisfy Invariant III by implementing MSTORE in a way
that traverses the heap backwards from x to every argument
of m that might reach x and associates every color of y with
those arguments (and possibly intermediate heap locations).
As an optimization, we instead use G to record an edge from
each color c1 of L (y) to each color c2 of L (x.f) with the
following meaning: c1 → c2 ∈ G means every virtual location
with color c2 has color c1 as well. Figure 8 depicts the results
of a store operation, while figure 9 depicts how G serves to
associate two colored heap subgraphs.

Rule MINV implements standard method call semantics,
mapping the virtual locations of arguments and the return value
between caller and callee. Rule MSEQ is the same as SEQ in
the natural semantics but adds L , C, G and D where needed.

As a consequence of Invariants I and II, the modeling
semantics associate the color of each argument to every value
and heap location that depends on the argument values on
entry to m. Then, because of Invariant III, when the execution
reaches the end of subtrace T(m:i) every argument and the
return value have all the colors of heap locations reachable
from that argument or return value (as represented by G).
We construct our specifications by examining the colors of
each argument aj and the return value r after executing the
subtrace: for every color of r (or aj) that corresponds to the
initial color of a different argument ak, we add ak → r
(ak → aj) to our model.

D. Combining Specifications

For each invocation subtrace T(m:i), the process just out-
lined produces an underapproximation of the specification for
m, based on a single execution (m : i). We combine the results
from different invocations of m by taking an upper bound on
the set of argument-to-argument and argument-to-return flows
discovered for every execution, which is simply the union of
the results of (m : i) for every i.

For example, consider the method max(a,b) designed to
return the larger of two numbers, disregarding the smaller
one. Suppose that we have two subtraces for this method:
one for invocation max(5,7), which returns 7 and produces
the model M1 = {arg#2 → return} and one for invocation
max(9,2), which returns 9 and produces the model M2 =
{arg#1→ return}. Clearly the correct specification reflecting
the potential explicit information flow of method max(a,b)
is M1 ∪M2 = {arg#1→ return, arg#2→ return}.

We should note that combining specifications in this way
inherently introduces some imprecision with respect to the
possible flows on a given execution of the method. The effects
of this imprecision in our overall system depend on the charac-
teristics of the static analysis that consumes the specifications.
For example, the above specification for max(a,b) would
be strictly less precise than analyzing the corresponding code
(assuming the natural implementation) with an ideal path-
sensitive analysis, since it merges two different control paths
within the max function: one in which the first argument is
greater and one in which the second argument is greater.
For context-sensitive but path-insensitive analysis such as



STAMP (see Section V-B), loss of precision due to combining
specifications is less common, but still possible in theory.
Consider a method do(a,b) { a.doImpl(b) } and two
invocations of this method in which a has different types and
each type has its own implementation of a.doImpl(b). A
context-sensitive analysis can tell which version of doImpl is
executed, but Modelgen will simply merge the flows observed
for every version of doImpl seen in any trace of do(a,b).

E. Calls to Uninstrumented Code
Our approach to specification mining is based on instru-

menting and executing as much of the platform code as we
can. Unfortunately recording the execution of every method in
the Android platform is challenging. In particular, any tech-
nique based on Java bytecode instrumentation cannot capture
the behavior of native methods and system calls. Since our
inserted recorder class is itself written in Java, we must also
exclude from instrumentation some Java classes it depends
upon to avoid introducing an infinite recursion.

Thus, traces are not always full traces but represent only
a part of a program’s execution. We need to deal with two
separate problems during event interpretation: (1) How should
Modelgen interpret calls to uninstrumented methods? (2) How
can we detect that a trace has called uninstrumented code?

For the first problem, Modelgen offers two separate solu-
tions. The user can provide manually written models for some
methods in this smaller uninstrumented subset (as we do, for
example, for System.arraycopy and String.concat).
If a user-supplied model is missing for a method, Modelgen
assumes a worst-case model in which information flows from
every argument of the method to every other argument and to
its return value. In many cases, this worst-case model, although
imprecise, is good enough to allow us to synthesize precise
specifications for its callers.

The problem of detecting uninstrumented method calls
inside traces is surprisingly subtle. Droidrecord writes an
event at the beginning of each method and before and after
each method call. In the simplest case we would observe
these before-call and after-call markers adjacent to each other,
allowing us to conclude that we called an uninstrumented
method. However, because uninstrumented methods often call
other methods which are instrumented, this simple approach is
not enough. A call inside instrumented code could be followed
by the start of another instrumented method, distinct from the
one that is directly called. Dynamic dispatch and complex class
hierarchies further complicate determining if the method we
see start after a call instruction is the instruction’s callee.

Our solution for detecting holes in the trace due to invoking
uninstrumented code is to record the height of the call stack
at the beginning of every method and before and after each
call operation. Since the stack grows for every method call,
whether instrumented or not, we use the stack height to
determine when we have called into uninstrumented code.

V. EVALUATION

We perform three studies to evaluate the specifications gen-
erated by Modelgen. First, we compare them directly against

our existing manually-written models (Section V-A). Second,
we contrast the results of running the full STAMP static
information-flow analysis system using these specifications as
input, against the results of the same system using the manual
models (Section V-B). Third, we study the effect of testsuite
quality on the generated specifications (Section V-C).

A. Comparison Against Manual Models

To evaluate Modelgen’s ability to replace the manual effort
involved in writing models for STAMP (see Section II),
we compare the specifications mined by Modelgen against
existing manual models for 309 Android platform methods.

We conducted all of our evaluations on the Android 4.0.3
platform, which has a total of 46,559 public and protected
methods. STAMP includes manual models for 1,116 of those
methods, of which 335 are inside the java.lang.* package
and therefore are uninstrumented in DroidRecord, and 321
have only source or sink annotations, leaving 460 methods
for which Modelgen could infer comparable specifications.

For our evaluation, we obtained traces by running tests
from the Android Compatibility Test Suite (CTS) [21]. The
Android CTS is designed to ensure compatibility between
multiple implementations and variations of the Android plat-
form and our positive results are due at least in part to
the fact that CTS is a high quality set of tests. The CTS
contains static references to 14,435 android platform methods,
but might exercise an even larger portion of the platform
due to dynamic dispatch and some platform methods being
called from other methods under test. For our experiments,
we restricted ourselves to a subset of the CTS purporting to
test those classes in the java.* and android.* packages,
but outside of java.lang.*, for which we have manual
models (not counting simple source or sink annotations). This
smaller subset of the CTS contains static references to 712
platform methods and produced Modelgen specifications for
660 platform methods. Note that for some packages for which
we have manual models, such as com.google.*, the CTS
contains no tests.

Table II summarizes our findings, organized by Java pack-
age. For each package we list the number of classes and
methods for which we have manual specifications, as well as
the total number of correct individual flow annotations (e.g.
arg#X→ return) included either in our manual specifications
or generated by Modelgen. We then list separately the flows
discovered by Modelgen and those in our manual specifica-
tions. We consider only those flows in methods for which we
have manual specifications and only those classes for which
we ran any CTS tests, which gives us 309 methods to compare.

We evaluate Modelgen under two metrics: precision and
recall. Precision is a measure of soundness: the percentage
of all possible flows through the methods that are discovered
by Modelgen. Given that neither Modelgen nor our manual
models are guaranteed to be precise, we approximate precision
by comparing the flows discovered by each approach to the
union of the flows discovered by both approaches. Formally,
let FModelgen be the set of flows discovered by Modelgen



Package Classes Methods Missing
trace
info.

Total
correct
flows

Modelgen
correct
flows

Manual
correct
flows

Modelgen
false

positives

Manual
errors

Modelgen
precision

Manual
precision

Modelgen
recall

java.nio.* 2 26 4 50 50 42 0 0 100.00% 84.00% 100.00%
java.io.* 28 146 23 280 275 234 2 0 98.21% 83.57% 97.86%
java.net.* 7 37 4 104 100 65 0 1 96.15% 62.50% 93.85%
java.util.* 4 28 0 36 36 31 0 1 100.00% 86.11% 100.00%
android.text.* 3 5 2 3 3 3 0 0 100.00% 100.00% 100.00%
android.util.* 2 8 1 11 4 7 0 0 36.36% 63.64% 0.00%
android.location.* 3 13 3 12 12 9 0 0 100.00% 75.00% 100.00%
android.os.* 2 46 3 60 60 49 0 0 100.00% 81.67% 100.00%
Total 51 309 40 556 540 440 2 2 97.12% 79.14% 96.36%

TABLE II
COMPARING MODELGEN SPECIFICATIONS AND MANUAL MODELS

and FManual the set of flows in our manual models. Model-
gen’s precision is:

PModelgen =
|FModelgen |

|FModelgen ∪ FManual |
And the precision of the manual models is:

PManual =
|FManual |

|FModelgen ∪ FManual |
Table II lists the precision of each approach for each

package. Overall, Modelgen’s precision is above 97%, whereas
the manual models are about 79% precise by comparison.

Recall measures how many of our manual models are also
discovered by Modelgen, and is calculated as:

Recall = 1− |FModelgen ∪ FManual | − |FModelgen |
|FManual |

As we can see from Table II, Modelgen finds about 96%
of our manual specifications. The specifications Modelgen
misses were written to capture implicit flows, which is not
surprising since Modelgen is designed to detect only explicit
flows. The most visible example of this limitation is the
row corresponding to android.util, in which 7 of the 8
analyzed methods are part of the android.util.Base64
class, which performs base64 encoding and decoding of byte
buffers via table lookups, inducing implicit flows. The last
remaining method in this package is a native method and the
four new correct flows identified by Modelgen have to do with
flags being stored inside the Base64 class.

When collecting our results and contrasting the manual
models to Modelgen’s specifications, we found two false
positives in Modelgen, both in the same method and due to
an unexpected hole in the trace resulting from a bug in how
our current implementation handles inner classes. Modelgen
detected the hole in the trace and processed it under worst-
case assumptions, resulting in two spurious flows. Fixing the
bug will remove these flows. Notably, we found two errors in
the manual models: one was a typo (arg#2 → arg#2 instead
of arg#2 → return) and the other was a reversed annotation
(arg#1→ this instead of this→ arg#1).

Our current implementation of Modelgen failed to produce
traces for a few methods that have manual annotations, listed
under the column “Missing trace info.” of Table II. Reasons for

missing traces include: the method for which we tried to gen-
erate a trace is a native method, the Android CTS lacks tests
for the given method, or an error occurred while instrumenting
the class under test or while running the tests. This last case
often took the form of triggering internal responsiveness timers
inside the Android OS, known as ANR (Application Not
Responding) [22]—because our instrumentation results in a
significant slowdown (about 20x), these timers are triggered
more often than they would be in uninstrumented runs. Since
capturing the traces is a one-time activity, this high overhead
is otherwise acceptable.

Given these results, we are confident that Modelgen can be
used to replace most manual information flow models as it
managed to reproduce almost all our manual flow annotations
(96.38% recall) and produced many more correct annotations
that our manual models missed (97.12% vs 79.14% preci-
sion), while significantly reducing manual effort. Although our
evaluation focuses on Java and Android, the results should
generalize to any platform for which good test suites exist.

B. Whole-System Evaluation of STAMP and Modelgen

The STAMP static analysis component is a bounded
context-sensitive, flow- and object-insensitive information flow
analysis. A complete description of this system can be found
in Section 4 of [17]. STAMP never analyzes platform code
and treats platform methods for which it has no explicit
model under best-case assumptions. That is, platform methods
without models are assumed to induce no flows between their
arguments or their return values1.

To evaluate the usefulness of our specifications in a full
static analysis, we ran STAMP under two configurations: base
and augmented. In the base configuration, we used only the
existing manually-written models. In the augmented configu-
ration, we included (1) all source and sink annotations from
the manual models (annotating sources and sinks is outside
of the scope of Modelgen), (2) the Modelgen specifications
generated in the experiment of Section V-A, and (3) the
existing manual models for those methods for which Modelgen
did not construct any specifications (e.g. the java.lang.*
classes). The base and augmented configurations included
1215 and 2274 flow annotations, respectively.

1The alternative, analyzing under worst-case assumptions, produces an
overwhelming number of false positives.



Fig. 10. Number of flows produced by STAMP with and without specifica-
tions generated by Modelgen

We compared the results of both configurations on 242
apps from the Google Play Store. These apps were randomly
selected among those for which STAMP was able to run with
a budget of 8GB of RAM and 1 hour time limit in both
configurations. The average running time per app is around
7 minutes in either configuration.

STAMP finds a total of 746 (average 3.08 per app) and
986 (average 4.07) flows in the base and augmented config-
uration, respectively. The union of the flows discovered in
both configurations is exactly 1000. In other words, STAMP
finds 31% (254) new flows in the augmented configuration.
Like most static analysis systems, STAMP can produce false
positives, even when given sound models. Additionally, Mod-
elgen may produce unsound models for some methods (recall
the discussions in sections IV-D and IV-E). Given this, we
would like to know what proportion of these new flows are
true positives. To get a sense of what the true positive rate
of the new flows might be, we took 10 random apps from
the subset of our sample (109 of 242 apps) for which the
augmented configuration finds any flows not discovered by
the base configuration. We manually inspected these apps and
marked those flows for which we could find a feasible source-
sink path, and for which control flow could reach such path, as
“probable true positives”. Although this sort of inspection is
always susceptible to human error, we tried to be conservative
in declaring flows to be “probable true positives”. In most
cases, the flows are contained in advertisement libraries and
would trigger as soon as the app started or a particular view
within the app was displayed to the user.

Figure 10 shows the results of our manual inspection. The
flows labeled as “Augmented configuration: Unknown” are
those for which we could not find a source-sink path, but are
not necessarily false positives. The flows labeled “Augmented
configuration: Probable True Positives” represent a lower
bound on the number of new true positives that STAMP finds
under the augmented configuration. The lower portion of the
bar corresponds to those flows found in both configurations,
without attempting to distinguish whether they are false or
true positives. For the 10 apps, the augmented configuration

produces 64% more flows than the base configuration; of these
new flows, at least 55% are true positives.

The recall of the augmented configuration, which is the
percentage of all flows found under the base configuration that
were also found when running the augmented configuration,
is 98.12%. A flow found in the base configuration could be
missed in the augmented configuration if Modelgen infers a
different specification for a method, which is relevant for the
flow, than the manually-written model. In other words, the
delta in the recall for the flows STAMP reports follows from
the delta in the recall of Modelgen specifications compared to
the manual models (Table II).

C. Controlling for Testsuite Quality

Specification mining based on concrete execution traces
depends on having a representative set of test cases for each
method for which we want to infer a specification. One
threat to the validity of our experiment is that it could be
that our results are good only because the standard Android
compatibility tests are unusually thorough. In this section we
attempt to control for the quality of the test suite.

We measure how strongly our specification mining tech-
nique depends on the available tests by the number of method
executions it needs to observe before it converges to the
final specification. Intuitively, if few executions of a method
are needed to converge to a suitable specification of the
method’s behavior, then our specification mining technique is
more robust that if it requires many executions, and therefore
many test cases. Additionally, if a random small subset of the
observed executions is enough for our technique to discover
the same specification as the full set of executions, we can gain
some confidence that observing additional executions won’t
dramatically alter the results of our specification mining.

We take all methods from Table II for which we are able
to record traces and Modelgen produces non-empty specifica-
tions, which are 264 methods in total. We restrict ourselves
to those methods, as opposed to the full set for which we
have mined specifications, since we have studied their quality
during the comparison of Section V-A and found them close
to the ideal models a manual writer would find. For each such
method m, we consider the final specification produced by
Modelgen (Sm) as well as the set S of specifications for each
invocation subtrace of m. Starting with the empty specification
we repeatedly add a random specification chosen from S until
the model matches Sm, recording how many such subtrace
specifications are used to recover Sm.

Figure 11 shows a log scale plot of the number of methods
(y axis) that required n traces (x axis) to recover the full
specification over each of 20 trials. That is, we sampled the
executions of each method to recover its specification and then
counted the number of methods that needed one execution,
the number that needed two, and so on, and then repeated
this process 19 more times. The multiple points plotted for
each number of executions give an idea of the variance due
to the random choices of method executions to include in the
specification.
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Fig. 11. Specification Convergence

It is also useful to consider aggregate statistics over all
method specification inferences. In our experiment, 83.7% of
the methods needed just one subtrace specification to recover
the specification and no method required more than an average
of 9 random subtrace specifications. The maximum number of
subtraces needed to converge to a method specification (when
taking the worst out of 20 iterations of the algorithm) was
13 for java.util.Vector.setElementAt(Object,
int). The average number of subtraces required to converge
to a specification is 1.38. For comparison, the specifications
evaluated in Section V-A were inferred using a median of 4
traces (the average, 207, is dominated by a few large outliers).
We conclude that explicit information flow typically requires
few observations to produce useful specifications.

VI. RELATED WORK

Static taint analysis. A number of static techniques and
tools [12, 24, 36, 31, 44] have been developed for whole-
application taint analysis. See [41] for a survey of work in
this field. For applications that run inside complex appli-
cation frameworks these analyses often must include some
knowledge of the framework itself. F4F [43] is a scheme for
encoding framework-specific knowledge in a way that can be
processed by a general static analysis. In F4F, any models for
framework methods must be written manually. Flowdroid [3]
is a context-, flow- and object-sensitive static taint analysis
system for Android applications, which can analyze Android
platform code directly. By default, it uses models or ‘shortcuts’
for a few platform methods as a performance optimization and
to deal with hard-to-analyze code. Flowdroid’s shortcuts are
also information-flow specifications of a slightly more restric-
tive form than that used by Modelgen. Thus, it seems likely
the FlowDroid shortcuts could also be mined successfully from
tests.

There has also been some previous work on identifying
sources and sinks in the Android platform based on the
information implicitly provided by permission checks inside
API code [16, 4, 7] or by applying machine learning to some

of the method’s static features [40]. This work could be com-
bined with our method for inferring explicit information flow
specifications to enable fully automatic explicit information
flow analysis (i.e., with no manual annotations).

Dynamic taint tracking. Dynamic taint tracking uses in-
strumentation and run-time monitoring to observe or confine
the information flow of an application. Many schemes have
been proposed for dynamic taint tracking [23, 9, 13, 5]. An
exploration of the design space for such schemes appears in
[42]. Dytan [9] is a generic framework capable of expressing
various types of dynamic taint analyses.

Our technique for modeling API methods is similar to
dynamic taint tracking, and could in principle be reformulated
to target Dytan or some similar general dynamic taint tracking
framework. However, heap-reachability and all of our analysis
would have to be performed online, as the program runs, which
might exacerbate timing dependent issues with the Android
platform (recall the discussion in Section V-A).

Dynamic techniques for creating API specifications.
Many schemes have been proposed for extracting different
kinds of specifications of API methods or classes from traces
of concrete executions. However, unlike our information flow
specifications, most such specifications focus on describing
control-flow related properties of the code being modeled.

A large body of work (e.g. [8, 2, 46, 32, 48, 47, 10, 19, 34,
33, 30]) constructs Finite State Automata encoding transitions
between abstract program states. Other approaches focus on
inferring program invariants from dynamic executions, such
as method pre- and post-conditions (Daikon [38, 14, 15]),
array invariants [37] and algebraic “axioms” [25]. Another
relevant work infers static types for Ruby programs based
on the observed run-time types over multiple execution traces
[26]. Finally, program synthesis techniques have been used to
construct simplified versions of API methods that agree with
a set of given traces on their input and output pairs [39].

Tools for Tracing Dynamic Executions. Tools that allow
tracing and analyzing program executions are plentiful. Query
languages such as PTQL [20] and PQL [35] can be used to
formulate questions about program executions in a high-level
DSL, while tools like JavaMaC [28], Tracematches [1], Hawk
[11] and JavaMOP [27] permit using automata and formal
logics for the same purpose. Frameworks such as RoadRunner
[18] and Sofya [29] allow analyses to subscribe to a stream
of events representing the program execution as it runs.

VII. CONCLUSIONS

We have described an effective technique for generating
explicit information flow specifications for platform methods
that outperforms manual flow annotations in practice. We
presented Modelgen, an implementation of this technique for
Java and the Android platform. Finally, we have show that
Modelgen specifications are highly precise, have high recall
with respect to our existing manual models, allow our static
analysis to find true flows it misses despite years of manual
model construction effort and can be inferred from a relatively
small set of execution traces.
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